Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия звезд, источники

Источники энергии звезды, распределение 287, 288  [c.327]

Ответ на этот вопрос смогла дать только ядерная физика. Оказалось, что единственный процесс, который может обеспечить энергией звезды,— это процесс ядерного синтеза, когда легкие ядра сливаются в более тяжелые. Невероятна, огромна выделяемая при этом энергия — при синтезе одного грамма гелия из водорода получается столько же энергии, как при сгорании 25 тонн самого лучшего угля Поставить ядерный синтез на службу человеку, обеспечить его поистине неисчерпаемым источником энергии — серьезнейшая задача, стоящая перед физиками в наши дни.  [c.215]


Теоретически схема высвобождения термоядерной энергии совершенно ясна и могла бы быть предложена уже тогда, когда ученым стало ясно, откуда берется неиссякаемая энергия звезд. Да и практически ядерный синтез осуществлен в земных условиях — при взрывах водородных бомб. Поэтому, как сказал в своей нобелевской лекции академик П. Л. Капица, вызывает некоторое недоумение вопрос почему же до сих пор не удалось осуществить ядерный синтез не при взрыве, а так, чтобы он стал неиссякаемым источником энергии  [c.216]

Процессы первого типа — процессы синтеза легких ядер непрерывно идут во Вселенной, являясь источником лучистой энергии звезд, и лежат в основе термоядерного синтеза (водородная бомба). Процессы второго типа —деление тяжелых ядер —используются для получения энергии в атомной энергетике.  [c.39]

Представляется интересным использовать высокие — миллиардные — температуры, развивающиеся при взрыве атомной бомбы, для проведения синтетических реакций (напр., образование гелия из водорода), которые являются источником энергии звезд и которые могли бы еще более повысить энергию, освобождаемую при взрыве основного вещества (уран, висмут, свинец).  [c.332]

Температуры, получающиеся при атомном взрыве, можно сравнить с температурами во внутренних областях звезд, которые находятся в пределах от 10 до 100 млн. °К. Источником энергии звезд являются ядерные реакции, следовательно, в этом отношении атомный взрыв подобен процессу, происходящему в недрах звезд.  [c.367]

Если энергия затрачивается на излучение, то туманность постепенно сжимается и становится еще более горячей, т. е. ее средняя температура возрастает тем быстрее, чем быстрее она излучает энергию и при этом сжимается. Уравнение (117) показывает, как связана уменьшающаяся величина радиуса звезды за с ее возрастающей средней температурой Тср. В конце концов эта температура становится настолько высокой, что могут начаться ядерные реакции ). Когда главным источником энергии становятся ядерные реакции, гравитационное сжатие звезды замедляется или совсем прекращается, потому что увеличение давления излучения противодействует дальнейшему сжатию звездного вещества. Таково нынешнее состояние нашего Солнца. Приблизительно через 7-10 лет, когда в результате термоядерного горения большая часть водорода Солнца превратится в гелий, опять начнется сжатие и возобновится процесс постепенного повышения средней температуры внутри Солнца ).  [c.305]

Термоядерные источники энергии Солнца и звезд  [c.334]


Солнце излучает в окружающее пространство колоссальное количество энергии. Энергия, излучаемая Солнцем за 1 сек., или светимость Солнца, составляет Z-q = 3,86-10 эрг/сек. Из этого количества энергии только 4,3-10 ° часть приходится на долю Земли, но и эта доля является весьма большой. Имеются основания полагать, что с таким режимом Солнце излучает последние 5—8 млрд. лет, поэтому энергия, излученная им за это время, колоссальна. Однако Солнце — обычная рядовая звезда и далеко не самый мощный источник энергии. Имеются звезды, которые излучают в тысячи раз больше энергии, чем Солнце. Энерговыделение Солнца, рассчитанное на 1 г в секунду, составляет 1,94 эрг г-сек, в то время как энерговыделение красных гигантов в тысячи раз больше (см. табл. 18).  [c.334]

Какова физическая природа источников звездной. энергии, обеспечивающих ПОСТОЯНСТВО излучения звезды в течение многих миллионов и миллиардов лет По этому вопросу в науке был предложен ряд гипотез и теорий, на которых мы здесь не будем останавливаться. Каждая из ранее предложенных теорий встречалась с  [c.334]

Развитие ядерной физики привело к пониманию физической природы источников энергии Солнца и звезд. За последние 20—25 лет сложилось представление о звездах как о гигантских самоподдерживающихся термоядерных реакторах.  [c.335]

Источники энергии и эволюция звезд  [c.599]

И источники ЭНЕРГИИ и эволюция ЗВЕЗД 607  [c.607]

По мере выгорания водорода масса центрального гелиевого ядра увеличивается. Дальнейшая судьба звезды определяется ее полной массой. Сейчас считается, что в звездах с массой М < 3Mq из-за сброса оболочки на стадии красного гиганта ядерная эволюция завершается образованием изотопа гелия аНе. В более массивных звездах (М >ЗМ ) гелиевое ядро, лишенное ядерных источников энергии, постепенно сжимается (см. п. 3). Его плотность и температура при этом увеличиваются. Когда плотность достигает величины 10 г/см , а температура 10 К, начинается эффективное сгорание гелия в реакции тройного соударения а-частиц  [c.607]

Как указывалось в п. 3, если излучение звезды не компенсируется каким-либо источником энергии негравитационного происхождения, то звезда должна подвергаться гравитационному сжатию. В начальный период эволюции звезды стадия гравитационного сжатия прекращается ядерными реакциями, протекающими в ее недрах. Будет ли находиться звезда в равновесии после исчерпания запасов ядерной энергии, зависит от того, могут ли развиваться в веществе при температуре абсолютного нуля силы давления, способные противостоять силам гравитационного притяжения.  [c.609]

Вторым, и значительно более мощным, источником энергии является гравитационное сжатие звезды. Масштаб высвобождаемой при сжатии гравитационной энергии можно оценить, сравнив удельную энергию связи нуклона в атомном ядре с энергией связи нуклона в гравитационном поле. Максимально возможная гравитационная энергия связи нуклона, как показывается в общей теории относительности, равняется его энергии покоя. Именно такой будет энергия связи у нуклона, находящегося на поверхности звезды, радиус которой равняется ее гравитационному радиусу Меньшей, но все еще намного превышающей ядерную будет энергия связи нуклона, находящегося на поверхности нейтронной звезды. Например, если масса последней равняется массе Солнца, то гравитационная энергия связи находящегося на ее поверхности нуклона дается формулой  [c.616]

В этом случае внутреннее давление существенно зависит от температуры, и ядро звезды может, следовательно, регулировать темп горения углерода. Поэтому неустойчивость — гидростатическая неустойчивость — и, как следствие, имплозия возникают только после образования железного ядра, т. е. ядра звезды, состоящего из атомных ядер группы железа. Проследим за возникновением этой неустойчивости. Лишенное ядерных источников энергии железное ядро звезды (опять-таки из-за нейтринных потерь) быстро разогревается и уплотняется. На первых порах темп гравитационного сжатия, определяемый нейтринными потерями, будет таким, что ядро звезды успеет подстроиться под изменяющиеся условия и останется в гидростатическом равновесии. Однако при температурах Т Ъ-10 К или при плотностях р > 1,15-10 г/см включаются столь мощные холодильники , что гидростатическое равновесие ядра звезды обязательно должно нарушиться. Какая величина быстрее достигнет критического значения при гравитационном сжатии — температура или плотность, определяется массой углеродного ядра.  [c.618]


Так как звезда излучает энергию в окружающее пространство, то при равновесии внутри звезды должны быть источники энергии. Природа этих источников энергии и их распределение внутри звезды в настоящее время ещё не вполне ясны. Однако исследование равновесия звёзд при различных законах распределения источников энергии показывает, что распределение давлений и плотности внутри звезды и, в частности, их значение в центре звезды зависят слабо от закона распределения источников энергии. Расчёты показывают, что если принять распределение источников равномерным по всей массе звезды или принять, что то же количество энергии выделяется в одной точке — в центре звёзды, то характеристики состояния получаются близкими. К этому можно ещё добавить, что количество выделенной энергии за счёт физикохимических процессов очень чувствительно зависит от температуры. В центре звезды температура наибольшая, поэтому основная часть энергии выделяется вблизи центра звезды. Как показывают расчёты, это положение должно хорошо оправдываться в действительности ).  [c.286]

Если источники энергии распределены внутри звезды непрерывно, то величину надо положить равной нулю. При наличии в центре звезды концентрированного источника энергии имеем Йп Ф 0.  [c.288]

Итак, для модели с точечным источником энергии нельзя установить в результате решения системы уравнений II два соотношения вида (5Ш) и iK(9K). Эти связи можно установить и в отом случае, если задать дополнительно зависимость So (Poi Ро и 0—плотность и температура в центре звезды.  [c.290]

Источники энергии звезд. По интенсивности излучения Солнца было определено, что суммарная отдача им энергии равна 4-10 эрг/с. Предположим, что Солнце отдавало энергию с этой скоростью в течение У лет, прошедших с того момента, как началось его сжатие. Половина гравитационной потенциальной энергии Солнца перешла в кинетическую энергию составляющих его молекул (согласно теореме о вирнале), а другая половина —в энергию излучения. Докажите, что У 310 лет. Результат, полученный для У, слишком мал, если сравнить его с известным возрастом Солнца 5 10 лет. (Предполагается, что возраст Солнца по крайней мере равен возрасту Земли.) Значительно ббльшим источником энергии излучения Солнца является ядер-иая, а не авитационная энергия.  [c.297]

Диаграмма Герцшпрунга—Рессела [21] (рис. 45.18) связывает светимости и спектральные классы звезд. Каждому типу звезд на диаграмме соответствует своя зона. Наиболее многочисленный тип звезд принадлежит главной последовательности. Это звезды, источником энергии которых служат термоядерные реакции Н—)-Не. Минимальная масса, необходимая для того, чтобы в недрах звезды начались термоядерные реакции, равна 0,085 Mq[22]. В звезда/ массой основ-  [c.1209]

Плотно заселенные зоны диаграммы Герцшпрунга — Рассела — главная последовательность и последовательности красных гигантов и белых карликов — соответствуют наиболее длительным стадиям эволюции звезд. Действительно, при случайной выборке звезд вероятность занести на диаграмму Герцшпрунга — Рассела звезду, находящуюся в состоянии, переходном от одной длительной стадии к другой, является, очевидно, очень малой. Мы приходим к выводу о том, что в эволюции звезд следует различать во всяком случае три стадии главная последовательность, красный гигант, белый карлик. Отождествление источников энергии звезд с экзотермическими ядерными реакциями и теоретическая разработка звездных моделей позволили решить нетривиальный вопрос о направле- НИИ звездной эволюции. Оказалось, что средняя звезда начинает свой видимый жизненный путь как звезда главной последовательности, проходит стадию красного гиганта и завершает жизнь белым карликом.  [c.601]

Известно, что Майкельсон и Пиз в 1921 г. успешно измерили видимый диаметр звезды Бетельгейзе и некоторых других наиболее ярких красных звезд. Балка длиной 6 м, установленная перед 2,5 метровым телескопом обсерватории Маунт-Вильсон, естественно, подвергалась изгибам, и если вспомнить, что было необходимо выравнивать оптические пути с точностью порядка 1 мкм, то становятся очевидными невероятные трудности, стоявшие на пути этих исследований. В 1930 г. Пиз сконструировал второй интерферометр с балкой длиной 16 м, но с его помощью было получено мало результатов, поскольку здесь встретились еще большие трудности при настройке интерферометра. В 1960 г. Хенбери-Брауи и Твисс предложили новый тип интерферометра — интерферометр интенсивностей , с помощью которого измеряют корреляцию двух сигналов, получаемых от двух фотоумножителей, на которые падает свет от звезды. Эта корреляция пропорциональна квадрату модуля степени пространственной когерентности света, падающего на оба фотоумножителя. Как и в методе Майкельсона, видимый диаметр звезды вычисляется по степени пространственной когерентности принятого света. В этом случае можно получить очень высокое разрешение, раздвинув фотоумножители на достаточно большое расстояние, чего не могли сделать Майкельсон и Пиз. Однако степень пространственной когерентности связана с фурье-образом распределения энергии по источнику (звезде). Следовательно, корреляция сигналов на выходе фотоумножителей пропорциональна квадрату функции распределения интенсивности в изображении звезды и метод пригоден только для ярких звезд.  [c.122]

П1. Т. р. в зве.здах. Т. р. в звездах играют двоякую роль — как основной источник энергии звезд, в том числе Солнца, и как механизм образования ядер химич. элементов. Для т. н. нормальных гомогенных звезд (в т. ч. Солнца) главным процессом ядерного синтеза, ответственным за выделение энергии, является сгорание И в Не, точнее — экзоэнергетич. превращение 4 протонов в ядро Ие и 2 позитрона. Этот конечный результат можно получить двумя различными путями (Г. Бете и др., 1938—39 гг.) 1) в т. н. протон-нротонной (рр) цепочке, или водородном цикле  [c.178]


Как было установлено в результате детального изучения строения белых карликов, их недостаточная яркость объясняется тем, что запас водорода, главный источник энергии звезд, уже использован эти звезды состоят в основном из гелия. Та слабая яркость, которая все же наблюдается, обусловлена гравитационной энергией, освобождающейся при медленном сжатии ввезды. По-видимому, эти звезды достигли конечного этапа эволюции звезд. Одна из ближайших к нам звезд, спутник Сириуса, расположенная на расстоянии 8 световых лет от Солнечной системы, является белым карликом. Существование  [c.255]

Полученные результаты приведены в виде графиков. Для примера на рис. 15.12 показано распределение плотности нейтронных звезд в железе в зависимости от толщины защиты для начальной энергии протонов 70 Гэв с и различных расстояний от оси пучка (г = 0, 2, 5, 10, 20 и 30 см). Распределения проинтегрированы по бесконечной плоскости, нормальной к направлению пучка первичных протонов. В таком виде проинтегрированное распределение плотности соответствует ослаблению излучения плоского мононаправленного источника. На рис. 15.12 показано также экспоненциальное ослабление потоков первичных частиц в результате процессов неупругого взаимодействия.  [c.258]

Основная доля падающих на границу атмосферы КЛ имеет галактическое происхождение (галактические КЛ). Источниками этих частиц являются сверхновые и их остатки (включая нейтронные звезды) [1, 2]. Часть КЛ (в основном с энергиями 10 —10 эВ) приходит к Земле от Солнца. Солнечные КЛ ускоряются во время сильных хромосферных вспышек и других активных процессов на Солнце [3]. Частицы самых высоких наблюдаемых анергий (Я> 10 - -10 эВ), возможно, имеют внегалактическое происхождение. Они ускоряются в активных галактиках [2]. Источником электронов с энергиями <3-10 эВ в межпланетной среде является магнитосфера Юпитера [4]. При энергиях 10 —10 эВ обнаружена так называемая аномальная ядерная компонента КЛ. Эти частицы ускоряются во внешних областях гелиосферы — на внешних границах области, занятой солнечным ветром [5].  [c.1173]

После выгорания водорода в ядре начинается горение водорода в окружающем ядро слое, а затем последовательное горение гелия, углерода и других эле ментов. На этих стадиях происходит увеличение размеров и светимости звезды, в результате чего она перемещается по диаграмме Герцшпрунга — Рессела вправо и вверх. В области красных гигантов находятся звезды со слоевым источником энергии. На горизонтальную ветвь попадают звезды умеренных масс (около Mq), в ядре которых горит гелий. На поздних стадиях эволюции звезды интенсивно теряют массу. После истощения всех источников термоядерной энергии звездный остаток в зависимости от его массы превращается в белый карлик, нейтронную звезду или черную дыру.  [c.1209]

Компактные звезды, входящие в состав тесных двойных систем, могут проявлять себя как рентгеновские источники [33]. Источником энергии служит аккреция вещества, перетекающего с нормальной звезды на компактную. Светимость аккрецирующих источников L,  [c.1213]

Вращающиеся нейтронные звезды с сверхсильными магнитными полями могут проявлять себя как радиопульсары [35, 36] — мощные источники строго периодических импульсов радиоизлучения, период которых совпадает с периодом вращения нейтрошюй звезды (табл. 45.21). Радиоизлучение имеет степенной спектр (рис. 45.24). Источником энергии пульсара является энергия вращения нейтронной звезды, поэтому периоды всех пульсаров увеличиваются. Известно свыше 400 пульсаров.  [c.1213]

Теоретически можно указать два возможных источника энергии вспышки сверхновой. Первым источником являются уже знакомые нам ядерные реакции. Как мы увидим ниже, опасность ядер-ного взрыва подстерегает звезду на стадии сжигания в ее центральных областях ядер изотопа углерода При горении углерода выделяется энергия Q, равная примерно 1 МэВ на нуклон. Поэтому для получения наблюдаемой при вспышке сверхновой энергии достаточно взрывным образом сжечь 1—2 солнечные массы углерода  [c.616]

Нетрудно показать, что общая энергия, излучаемая цефеидами за периоды изменения их блеска, мала но сравнению с общим запасом гравитационной и внутренней тепловой энергии всей звезды. Этим можно объяснить также слабое влияние законов распределения источников звёздной энергии на раснределепие плотности и давления в звёздных недрах для обычных звёзд и для цефеид. Поэтому мы можем допустить, что в неустановившихся движениях звезды в целом энергия, выделяемая в центре и излучаемая во внешнее пространство за время периода колебания, не играет существенной роли. При рассмотрении неустановившихся движений в качестве последнего допущения мы примем, что молекулярный вес fi и коэффициент теплопроводности постоянны во всей массе звезды.  [c.287]


Смотреть страницы где упоминается термин Энергия звезд, источники : [c.388]    [c.288]    [c.251]    [c.137]    [c.199]    [c.1209]    [c.601]    [c.603]    [c.605]    [c.609]    [c.611]    [c.613]    [c.614]    [c.615]    [c.617]    [c.619]   
Основы ядерной физики (1969) -- [ c.334 , c.336 ]



ПОИСК



Звезда

Источник энергии

Источники энергии звезды, распределение

Источники энергии и эволюция звезд

Термоядерные источники энергии Солнца и звезд



© 2025 Mash-xxl.info Реклама на сайте