Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядерные реакторы быстрые

Жидкие металлы используют в технике в качестве нагревающей среды при термической обработке металлов (РЬ), для охлаждения клапанов двигателей внутреннего сгорания (Na — рис. 102), в качестве теплоносителя в котлах бинарного цикла (Hg—Н2О) и в ядерных реакторах, особенно в реакторах на быстрых нейтронах (Na, К, Na + К, Li, Ga Hg, Sn, Bi, Pb, Pb -f- Bi и др.).  [c.142]

Применение термопар в ядерных реакторах сталкивается со многими трудностями, и пока нет достаточных оснований для создания термопар со сроком службы более 20 лет. Однако конструирование и технология производства термопар для реакторов быстро развивается и ниже будут рассмотрены специфические проблемы, возникающие при работе термопар в потоке нейтронов. Прежде чем перейти к рассмотрению конкретных типов термопар и их применениям, остановимся кратко на основах теории термоэлектрических явлений, возникающих в металлах и сплавах, помещенных в неоднородное температурное поле.  [c.267]


Активная зона ядерного реактора на тепловых нейтронах содержит значительное количество замедлителя нейтронов. Так, в уран-графитовом реакторе концентрация ядер углерода превышает концентрацию ядер в 6000—10 000 раз. В активной зоне реактора на промежуточных нейтронах содержится гораздо меньше замедлителя, а в быстром реакторе он вообще отсутствует.  [c.9]

Выше уже отмечалась роль упругого рассеяния при замедлении быстрых нейтронов, которое является одним из важнейших процессов, протекающих в ядерных реакторах. Своеобразным процессом упругого рассеяния является диффузия тепловых нейтронов.  [c.290]

В настоящее время имеется очень много разнообразных конструкций ядерных реакторов, работающих на тепловых, промежуточных и быстрых нейтронах.  [c.387]

Ядерные реакторы на быстрых нейтронах не содержат замедлителя.  [c.387]

Практическое осуществление такого эксперимента сначала казалось совершенно фантастичным. Действительно, электронное антинейтрино с трудом удалось зарегистрировать, воспользовавшись мощным потоком этих частиц от ядерного реактора. Но мюонные нейтрино в ядерных реакторах не рождаются. Тем не менее и эту задачу удалось решить, воспользовавшись новыми более эффективными методами регистрации и тем, что нейтринные сечения, как и все сечения реакций, обусловленных слабыми взаимодействиями, быстро (линейно в ЛС, см. (7.196)) растут с энергией. О самом опыте мы расскажем в гл. IX, 4, п. 11. Здесь же отметим, что опыт подтвердил наличие реакции (7.201) и отсутствие реакции (7.202). Тем самым было установлено различие электронного и мюонного нейтрино  [c.422]

В большинстве случаев в ядерных реакторах, работающих на медленных нейтронах, применяют природный уран, поскольку обогащение урана для повышения в нем содержания увеличивает его стоимость. При работе на быстрых нейтронах возможно пользоваться реакторами-размножителями, в которых количество вновь образующегося делящегося материала при протекании цепной реакции превосходит количество первоначально загруженного.  [c.465]

Помимо основной реакции (п, у) в ядерном реакторе протекают реакции на быстрых нейтронах типа (п, р), (п, а) и др., в которых образуются изотопы соседних по Периодической таблице элементов. Кроме того, в облученном образце возможно появление дочерних радиоизотопов - промежуточных продуктов распада первично образующихся изотопов. И те и другие статистически равномерно распределены в определяемом элементе и могут, в принципе, использоваться в качестве чужеродной метки.  [c.207]


Независимо от сооружения реактора БН-350 в Мелекесском институте ядерных реакторов ведется постройка опытного реактора БОР-60, предназначенного для исследований, связанных с дальнейшим совершенствованием конструкций реакторов на быстрых нейтронах. Тепловая мощность этого реактора 60 тыс. кет.  [c.179]

Всего три десятилетия отделяют наше время от времени открытия искусственной радиоактивности. Последние 15—20 лет ведется строительство ядерных реакторов и ускорителей заряженных частиц. Значительные достижения в этой области и успехи радиохимии обусловили быстрое распространение установок для использования ядерных излучений, в частности осколочных радиоактивных элементов (изотопов) в различных областях научных исследований и во многих отраслях народного хозяйства.  [c.188]

Перенос кинетической энергии посредством рассеяния имеет место при получении потока медленных нейтронов. Быстрые нейтроны, образованные в результате деления, совершают последовательные упругие соударения. При этом их кинетическая энергия понижается до уровня, при котором нейтрон с большей вероятностью способен на деление, чем на захват (без деления). Лучшими замедлителями служат легкие элементы. Наибольшей замедляющей способностью обладает водород. Однако применение его как замедлителя в ядерных реакторах ограниченно, так как он сильно поглощает нейтроны. В этом отношении лучшими являются дейтерий, масса которого равна 2, и углерод, масса которого равна 12. В лабораторных условиях, впрочем, для замедления нейтронов постоянно пользуются водородом в виде предельного углеводорода.  [c.105]

Замкнутый цикл и стратегия внедрения реакторов-размножителей на быстрых нейтронах. Основываясь на варианте развития однократного топливного цикла, авторы рассмотрели направление развития с замкнутым топливным циклом и с внедрением реакторов-размножителей на быстрых нейтронах (БН) с переработкой отработавшего урана и использованием плутония, наработанного в тепловых реакторах. Быстрое развитие промышленности топливного цикла было бы выгодно по нескольким причинам, среди которых не последней является возможность безопасной переработки ядерных отходов. Тем не менее для составления нижеследующих вариантов был выбран более осторожный подход, при котором строительство предприятий топливного цикла осуществляется в соответствии с потребностями внедрения реакторов БН.  [c.96]

Существуют различные способы классификации реакторов. Их подразделяют в зависимости от выполняемой ими функции (на рабочие или экспериментальные), от используемого типа расщепляющегося топлива, от типа теплоносителя, предназначенного для извлечения тепла, выделяемого в результате расщепления, и т. д. Весьма удобно классифицировать ядерные реакторы по энергии нейтронов (быстрые, медленные), вызывающих большинство реакций деления (табл. 5). Конечно, термины быстрые , средние (промежуточные) и медленные нейтроны (или реакторы) весьма относительны, поскольку даже так называемые медленные  [c.71]

Хотя газообразные теплоносители позволяют развить более высокую рабочую температуру, жидкостные отводят быстрее тепло, или, как говорят инженеры-энергетики, дают более высокую удельную мощность, а это крайне важно для работы компактных реакторов, генерирующих большое количество энергии в малом объеме. Жидкостные теплоносители нашли широкое применение в быстрых реакторах, о которых будет сказано дальше, а также в графито-водных реакторах. Однако, помимо теплоносителя, жидкостным может быть и замедлитель, что само по себе делает более компактным ядерный реактор, поскольку в этом случае требуется меньшее количество замедлителя. Так, если применить в качестве теплоносителя и замедлителя обыкновенную воду, то вполне возможен реактор, схема которого  [c.83]

Тепловые реакторы, в которых вода служит и теплоносителем и замедлителем, гораздо более компактны, чем их собратья с графитовым замедлителем и газовым теплоносителем, однако не столь компактны, как быстрые реакторы. Быстрые реакторы могут быть очень компактными и обладать исключительно высокой номинальной мощностью, по крайней мере в 1000 раз превышающей номинальную мощность графито-газовых реакторов. Несомненно поэтому, что в ближайшем будущем будет строиться все больше и больше быстрых реакторов, особенно в связи с увеличением запасов искусственного топлива— плутония и урана-233. По-настоящему компактные экономичные ядерные реакторы открывают перед человечеством волнующую перспективу использования портативных атомных электростанций, которые можно перевозить на самолетах или вертолетах в далекие джунгли, пустыни или отдаленные районы Севера.  [c.90]


При помощи-ускорителей частиц, имеющихся сейчас на вооружении ядерной физики, к сожалению, нельзя получить всю необходимую нам энергию для ядерных реакций синтеза. Например, предположим, что в таком ускорителе с помощью пучка дейтронов энергией 1 МэВ бомбардируется мишень из дейтерия, первоначально имеющая комнатную температуру. Средняя кинетическая энергия ядер дейтерия в мишени при комнатной температуре составляет примерно 0,025 эВ (в каждом грамме мишени содержится около З-Ю таких ядер). В лучшем случае только 10% бомбардирующих дейтронов (пучок таких дейтронов может содержать всего около 10 частиц) будет вступать в ядерную реакцию синтеза с участием дейтронов мишени (возможно, лишь после многочисленных столкновений) и отдавать тем самым часть своей кинетической энергии на термоядерную реакцию. А остальные 90% не вступают в реакцию синтеза, хотя они также отдают некоторую часть своей энергии ядрам мишени (в принципе этот процесс близок к замедлению нейтронов в обычных ядерных реакторах). Вся выделившаяся энергия (и термоядерная, и кинетическая), поднимающая температуру мишени всего на несколько градусов, будет быстро уменьшаться в результате последующих столкновений (в которых, кроме дейтронов мишени, участвуют образующиеся нейтроны и гамма-кванты). Таким образом, бомбардировка дейтронами высоких энергий приводит в ускорителе лишь к тому, что эти дейтроны как бы растворяются в огромном количестве дейтронов мишени, обладающих низкой энергией. Оказывается, для того чтобы началась самоподдерживающаяся ядерная реакция синтеза, необходимо поднять температуру мишени до нескольких миллионов градусов. Только тогда беспорядочные столкновения, обусловленные тепловым движением дейтронов мишени, будут приводить к достаточно частым реакциям ядерного синтеза, чтобы выделившаяся энергия смогла превзойти энергию бомбардирующих дейтронов. Однако дам<е самые мощные современные ускорители не могут придать пучку бомбардирующих частиц энергию, способную разогреть мишень до  [c.104]

К сожалению, в настоящее время единственным источником интенсивных пучков быстрых нейтронов являются ядерные реакторы, которые представляют собой слишком громоздкое и дорогое оборудование для его сооружения поблизости от больниц или лечебных цент-  [c.122]

Специфические свойства графита, такие, как малое сечение поглощения нейтронов, хорошая замедляющая способность, сравнительная легкость получения химически чистого материала, исключительно высокие тепловые свойства и достаточная прочность, обусловили его широкое применение в ядерной технике. Однако при облучении в ядерном реакторе свойства графита значительно изменяются вследствие смещения быстрыми нейтронами атомов углерода из узлов кристаллической решетки и создания в ней структурных изменений.  [c.5]

В статье [190] изучается поведение тонкой цилиндрической оболочки, нагруженной внутренним давлением и подверженной действию переменного температурного поля, характеризуемого перепадом по ее толщине. Задача поставлена применительно к расчету оболочки топливного (тепловыделяющего) элемента (ТВЭЛ) ядерного реактора на быстрых нейтронах, для которого имитируются условия повторных выходов на режим и выключе-яий. Внутреннее давление от газообразных продуктов распада  [c.205]

Такие требования к развитию ядерной энергетики поставили задачу поиска новых рабочих тел и теплоносителей и более эффективных схем преобразования тепла в АЭС с ядерными реакторами на быстрых нейтронах., Одним из путей решения этой проблемы может быть применение в качестве теплоносителей ядерных реакторов и рабочих тел газовых турбин химически реагирующих систем, в которых протекают обратимые реакции с изменением числа молей [29, 407, 416, 417].  [c.3]

Главное преимуш,ество жидких металлов — хорошие, а в ряде случаев отличные теплофизические свойства, позволяющие осуществить в ядерном реакторе интенсивный теплосъем. Высокая температура кипения жидких металлов обеспечивает возможность получения в энергетических установках водяного пара высоких параметров при низких давлениях в корпусе реактора, и в первом контуре. Применение жидкометаллических теплоносителей обеспечивает достаточно высокий к. п. д. АЭУ. Ядерные реакторы с жидкометаллическим теплоносителем способны работать как на тепловых, так и на быстрых нейтронах. В последнем случае коэффициент воспроизводства ядерного горючего мон ет существенно превысить единицу.  [c.9]

Несмотря на то что при разработке термоядерных реакторов будет широко использоваться опыт работы материалов в ядерных реакторах, проблема материалов в этом случае стоит еще более остро, чем для быстрых реакторов. Это обусловлено прежде всего особенностями процесса передачи энергии ядерных реакций. Известно, что около 88% всей энергии деления выделяется в топливе в виде кинетической энергии осколков деления и энергии -излучения и только примерно 12% выносится у-излучением ( 9,4%) и нейтронами ( 2,5%) за пределы топлива и поглощается конструкционными материалами. Это дает конструктору ядерного реактора определенные возможности для подбора материалов в соответствии с их назначением. Например, ядерное топливо, подвергающееся наиболее мощному радиационному воздействию, обычно стремятся сделать максимально стойким к этому воздействию, в меньшей степени заботясь о его конструкционных свойствах, так как роль несущего элемента обеспечивает оболочка, в которую оно заключено.  [c.10]

Красин А. К. и др. Физико-технические основы создания АЭС с газоохлаждаемыми ядерными реакторами на быстрых нейтронах с диссоциирующим теплоносителем — четырехокисью азота. IV Женевская конференция ООН, доклад 49/р/431, 1971.  [c.226]


Книга посвящена вопросам гидродинамики и теплообмена, возникающим ири проектировании и эксплуатации высокотемпературных газоохлаждаемых ядерных реакторов на тепловых и быстрых нейтронах с шаровыми макро- и микротвэлами. Предложена физическая модель течения газового теплоносителя через различные укладки шаровых твэлов и микротвэлов в бесканальной и канальной активных зонах. Анализируется структура шаровых ячеек и связь параметров с объемной пористостью.  [c.2]

Основные тенденции в усовершенствовании ядерных реакторов АЭС заключаются в увеличении единичных мощностей, знергонапряженности топлива, повышении к. п. д. и коэффициента воспроизводства. Наиболее полно этому удовлетворяют новые типы ядерных реакторов с гелиевым охладителем— высокотемпературный реактор на тепловых нейтронах (ВГР) ч реактор-размножитель на быстрых нейтронах (БГР) [1].  [c.3]

ЯДЕРНЫЕ РЕАКТОРЫ НА БЫСТРЫХ НЕЙТРОНАХ С ШАРОВЫМИ МИКРОТВЭЛАМИ  [c.31]

Новые возможности иолучения интенсивных пучков быстрых и медленных нейтронов появились после изобретения циклических ускорителей заряженных частиц и ядерных реакторов. В ускорителях получаются быстрые нейтроны при помощи (а, п)-, р, п)- или [d, п)-реакций, идущих при соударении ускоренных а-частиц, протонов или дейтонов с мишенью. В наиболее распространенных типах ядерных реакторов получаются медленные (в основном тепловые) нейтроны, которые образуются в результате замедления нейтронов, испускаемых в процессе деления ядер урана или другого ядерного горючего. В обоих случаях получаются пучки нейтронов несравненно большей интенсивности, чем с помощью нейтронных источников. В особенности интенсивные пучки нейтронов 10 нейтрКсм сек) позволяют получать ядерные реакторы, работающие в импульсном режиме.  [c.286]

Возможность получения изотола обеспечивается выбором-подходящей ядерной реакции. Наиример, очевидно, что проведение реакции (47. 1) в ядерном реакторе в течение длительнога времени должно привести к своеобразному эффекту второго, порядка — присоединению нейтрона к образовавшемуся ядру ggNp239 JJ. образованию изотопа gsNp . Аналогично реакции, протекающие под действием быстрых а-частиц, могут идти с выбрасыванием различного количества нейтронов ( , 2п), (а, Зп) и, следовательно, с образованием различных изотопов трансурановых элементов. То же самое относится и к другим ядерным реакциям.  [c.414]

В последние двадцать лет началось практическое использование новых энергетических ресурсов, а именно энергии, освобождаемой при превращениях атомных ядер. Сейчас за счет ядерных ресурсов покрывается менее 1 % мирового потребления энергии. Однако целесообразность и преимущества этого нового источника энергии настолько очевидны, что позволяют с увренностью предсказать быстрый рост ядерной энергетики при этом будут использованы ядерные реакторы различных типов, в первую очередь на медленных нейтронах. Более отдаленной представляется перспектива использования энергии термоядерного синтеза легких элементов, которая полностью снимет угрозу исчерпания энергетических ресурсов.  [c.514]

В ядерных реакторах возникающие при делении нейтроны быстро замедляются до тепловых энергий. Для большинства действующих. ядерных реакторов плотность потока нейтронов в активной зоне обычно равна 10 — IQii с"1-см" . В подкритических сборках (например, ПС-1) при использовании радиоактивного источника с потоком нейтроиов 10 с"1 достигаются потоки медленных нейтронов 10= с 1-см-2  [c.337]

В начале 60-х годов Институтом атомной энергии имени И. В. Курчатова совместно с другими научно-исследовательскими институтами была разработана первая энергетическая установка с ядерным реактором и прямым получением электроэнергии. В этой установке, получившей название Ромашка (рис. 55), впервые осуществлена оригинальная и простая конструктив-наьс схема, предусматривающая обт-единение в одном агрегате высокотемпературного реактора на быстрых нейтронах и термоэлектрического генератора электрической мощностью 0,5 кет. В активной зоне реактора, окруженной бериллиевым отражателем, помещены тепловыделяющие элементы (пластины из дикарбида уранаиСг с 90%-ным обогащением по урану-235) общим  [c.185]

В ближайшее время в число энергетических предприятий войдут вторые очереди строительства Белоярской и Ново-Воронежской АЭС с ядерными реакторами электрической мощностью 200—400 тыс. кет. За Полярным кругом — в Чукотском национальном округе — начато сооружение Билибинской АЭС. На Кольском полуострове сооружается промышленная АЭС с двумя энергетическими блоками для реакторов водо-водяного типа общей электрической мощностью 800 тыс. кет. Аналогичная АЭС электрической мощностью более 800 тыс. кет сооружается в Армянской ССР близ Еревана. На Урале ведется строительство новой промышленной АЭС с реактором на быстрых нейтронах, электрической мощностью 600 тыс. кет.  [c.196]

При адекватной оценке разъемов независимо от окружающей среды обычно рассматривают следующие важнейшие параметры их работы сопротивление между штырями и гнездами сопротивление изоляции между соседними штырями и характеристики коронного разряда. Эти параметры учитывали при изучении влияния излучения на одиннадцать 14-штырьковых разъемов. Разъемы облучали в Фордовском ядерном реакторе интегральным потоком быстрых нейтронов 1,8-10 нейтронIсм Е > 0,5 Мэе). Во время измерений разъемы находились в нерабочем состоянии, за исключением тех случаев, когда подавалось напряжение для измерения контактного сопротивления штырей. Значения контактного сопротивления при облучении не сильно отличались от соответствующих величин до облучения, лежащих в интервале 6-10" —10 ол1. Сопротивление изоляции между соседними штырями во время облучения уменьшилось на 2 порядка величины при мощности реактора в 1 Мет. Никаких необратимых изменений в изоляции не наблюдали. Во время изучения короны между некоторыми штырями дуговой разряд возникал прежде, чем можно было наблюдать четкий коронный разряд. Один штырь был признан разрушенным после трехчасового облучения. Это разрушение произошло при падении напряжения короны примерно до 100 в. Напряжение зажигания короны лежало между 1,2 и 1,8 кв, за исключением одного штыря, для которого оно составляло 600—800 в. Напряжение погасания короны было соответственно на 50—600 в ниже значений напряжения зажигания.  [c.419]

Кроме малой утечки радиоактивности, газоохлаждающие реакторы имеют другое существенное преимущество перед легководными реакторами термический КПД практически такой же, как и в ТЭС на органическом топ- ливе аналогичной мощности. Таким образом, в конденсатор отводится такое количество теплоты, которое позволяет использовать оборотную систему с градирнями, что существенно для предотвращения теплового загрязнения водотоков и водоемов. В добавление к этому техническая реализация газоохлаждаемых реакторов естественным образом приводит к разработке следующего поколения ядерных реакторов — реакторов - размножителей на быстрых нейтронах.  [c.175]

Авторы использовали следующую методику разработки варианта. Было рассмотрено несколько альтериативных прогнозов развития топливного цикла. Каждый из них представляет собой модель с внутренне присущими тому или иному возможному пути развития ядерной энергетики техническими и экономическими характеристиками в отдельных странах и регионах мира. Целью подобного моделирования было получение картины вероятного размещения ядерных реакторов и другого оборудования на национальном уровне, определение дальнейших потребностей в развитии добычи урана и топливного цикла и выявление задач, связанных с хранением и регенерацией отработавшего топлива и захоропением радиоактивных отходов. В исследовании оцениваются также сроки и темпы внедрения усовершенствованных ядерных технологий, таких как реакторы-размножители на быстрых нейтронах.  [c.94]


Рис. 29. Сравнительные размеры активных зон в некоторых типах ядерных реакторов, построенных в Великобритании к — графитогазовый реактор, работающий на природном уране Б — графитогазовый реактор, работающий на обогащенном уране В — быстрый реактор Рис. 29. Сравнительные размеры активных зон в некоторых типах <a href="/info/12830">ядерных реакторов</a>, построенных в Великобритании к — графитогазовый реактор, работающий на <a href="/info/65471">природном уране</a> Б — графитогазовый реактор, работающий на обогащенном уране В — быстрый реактор
Выводы по проблеме потребностей в уране. Последние изменения в положении с ресурсами и добычей урана были внесены в результате роста запасов в Австралии, открытия новых месторождений в Канаде, переоценки потенциала ЮАР, изменений резервов США и попыток оценить ее полные ресурсы. Можно сказать, что на выводы о количестве и доступности ресурсов урана влияют следующие группы факторов связанные с собственно производственной стороной вопроса (например, технический прогресс в разведочных работах, строительстве рудников и добыче) связанные с развитием ядерной энергетики в целом, включая потребителей (например, попытки стабилизировать добычу) наконец, внешние по отношению к ядерной энергетике (например, правительственная политика и обеспеченность финансовыми, людскими и материальными ресурсами в условиях конкуренции с другими отраслями энергетики). Перечисленные факторы влияют и на потребление урана. На любой прогноз потребности в ядерной энергии влияют политика отрасли в вопросах складского хранения, выбора типа реакторов и другого оборудования, отношение к перспективным типам реакторов. Ценообразование и финансирование, различия в видах контрактов влияют в основном на отношения между поставщиками и потребителями, хотя нередки здесь и вме-щательства государства. За пределами отраслевой сферы находятся изменения в общественном мнении, в правительственной политике и к конкурентоспособности других энергоисточников, но подобные факторы оказывают наиболее глубокое влияние на развитие отрасли. Положение ядерной энергетики является только частью глобальной ситуации, и на него, как и на положение других энергетических отраслей, оказывают влияние мировые экономические условия, например, падение спроса на энергию в 1973— 1974 гг. с последующими трудностями для развития отрасли. Практически нет сомнения, что, несмотря на существование антиядерного лобби, роль ядерной энергии в мировом потреблении энергии будет расти, причем в течение ближайших 20 лет будет преобладать ввод тепловых реакторов быстрые реакторы могут быть введены в конце 80-х годов и стать преобладающими вскоре после 2000 г. Активное внедрение ядерного синтеза может начаться после 2020 г., параллельно с развитием использования солнечной энергии и других возобновляемых источников энергии, которые со временем будут играть ведущую роль.  [c.302]

В книге изложены методы и алгоритмы теилофизического расчета ядерного реактора на быстрых нейтронах и теилообменных аппаратов атомных электростанций с диссоциирующим теплоносителем. Предлагаемые авторами методы ориентированы на использование ЭВМ и позволяют рассчитывать локальные характеристики тепломассообмена и сопротивления при течении диссоциирующего теплоносителя в каналах реактора и теплообменных аппаратов. Представлены результаты расчетов параметров реактора и теилообменных аппаратов для проектируемых в настоящее время АЭС с диссоциирующим теплоносителем, а также дано экспериментальное обоснование этих результатов.  [c.2]

Основу современной атомной энергетики составляют ядерные реакторы на тепловых нейтронах, которые будут определять ее структуру и расход природного урана на ближайшее десятилетие. Однако с учетом ограниченных запасов дешевого природного урана широкое развитие атомной энергетики возможно лишь на основе ядерных реакторов на быстрых нейтронах, в которых возможно расширенное воспроизводство делящегося ядерного горючего и повышение в 30— 40 раз эффективности использования природного урана. Экономически необходимый темп удвоения производства электроэнергии в большинстве стран мира составляет 8— 10 лет, а ожидаемый аемп удвоения мощностей ядерной энергетики — 5 лет [1.1]. Атомная энергетика может выполнить возлагающиеся на нее надежды и стать определяющей в энергообеспечении, если будут созданы быстрые реакторы с временем удвоения вторичного делящегося ядерного горючего 4 — 6 лет [1.1]. В этом случае в топливном балансе ядерной энергетики определяющая роль переходит к плутонию, нарабатываемому в быстрых реакторах, а система АЭС с тепловыми и быстрыми реакторами будет способна обеспечить саморазвитие при ограниченном потреблении ресурсов природного урана на начальном этапе с последующей работой системы АЭС на отвальном уране и вторичном плутонии из быстрых реакторов.  [c.3]

ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ ДИССОЦИИРУЮЩЕГО ТЕПЛОНОСИТЕЛЯ В АЭС С ЯДЕРНЫМИ РЕАКТОРАМИ НА БЫСТРЫХ НЕЙТРОНАХ  [c.24]


Смотреть страницы где упоминается термин Ядерные реакторы быстрые : [c.465]    [c.177]    [c.42]    [c.85]    [c.72]    [c.140]    [c.197]    [c.4]    [c.37]   
Атомы сегодня и завтра (1979) -- [ c.72 , c.86 ]



ПОИСК



Быстрые реакторы

Ось быстрая

Перспективы применения диссоциирующего теплоносителя в АЭС с ядерными реакторами на быстрых нейтронах

Реактор

Реактор быстрый. См. Быстрые реакторы

ЯТЦ ядерной энергетики с реакторами-размножителями на быстрых нейтронах

Ядерные реакторы на быстрых нейтронах с шаровыми микротвэлами

Ядерный реактор



© 2025 Mash-xxl.info Реклама на сайте