Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Строение атома и элементарные частицы

СТРОЕНИЕ АТОМА И ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ  [c.182]

ГЛ. VI. СТРОЕНИЕ АТОМА И ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ  [c.184]

Исследования строения атома и атомного ядра показали, что J3 состав атома входят электроны, протоны и нейтроны. Z протонов и (А — Z) нейтронов, вступая в сильные взаимодействия между собой, образуют атомное ядро Х , а Z электронов, обращающихся вокруг ядра, образуют электронную оболочку атома. В связи с этим вполне естественно было назвать эти частицы (е , р, п) элементарными частицами. Фотон (7), позитрон (е ) и нейтрино (v), имеющие самое непосредственное отношение к атому и ядру, также стали называть элементарными частицами.  [c.337]


К разряду элементарных частиц следовало бы относить наиболее простые, неделимые частицы материи. Исследования строения атомов и атомных ядер показали, что эти микрообъекты являются составными. Электроны, находящиеся на периферии атома, протоны и нейтроны, образующие атомные ядра, стали называть элементарными частицами, подчеркивая тем самым, что они более простые частицы, чем атомы и ядра атомов. К элементарным частицам причислили фотоны — кванты электромагнитного поля, а также нейтрино, появляющиеся в процессах Р-распада ядер. Дальнейшие исследования показали, что в процессах взаимодействия элементарных частиц образуются и другие типы частиц, большинство из которых взаимодействуют с протонами и нейтронами и между собой с такой же интенсивностью, как протоны и нейтроны в ядрах атомов. Эту большую группу частиц также назвали элементарными. Однако оказалось, что большинство частиц, отнесенных к разряду элементарных, нестабильны и могут в результате распада превращаться в другие элементарные частицы. При этом нельзя считать, что продукты распада более элементарны, чем сами распадающиеся частицы, поскольку, как правило, наблюдается несколько различных каналов распада одной и той же частицы. Поэтому нельзя заключить, что нестабильные частицы состоят из частиц — продуктов распада. Обнаружены были также частицы, напоминающие по своим свойствам электроны, но являющиеся нестабильными и существенно более массивными, чем электрон. Установлено существование трех разновидностей нейтрино.  [c.970]

Если бы пятьдесят лет назад у химика или у физика спросили, можно ли рассматривать атом как элементарную частицу, то, вероятно, большинство ответило бы утвердительно, поскольку тогдашняя паука не знала строения атома и даже не предполагала, что атом имеет какое-либо строение.  [c.7]

Механическая интерпретация этих концепций становится возможной и эмпиризм в значительной степени можно исключить, если основные концепции будут тесно связаны с теорией строения вещества. Таким путем проверяется правильность современных теорий строения вещества. В настоящее время считают, что вещество состоит из молекул, в свою очередь состоящих из атомов, построенных из таких элементарных частиц, как электроны, протоны и нейтроны. Элементарные частицы обусловливают свойства атомов, атомные свойства определяют свойства молекул, а молекулярные свойства определяют наблюдаемые свойства системы. Поэтому, зная свойства молекул, можно вычислить все наблюдаемые термодинамические свойства системы, состоящей из большого числа молекул.  [c.69]


После появления в 1913 г. модели строения атома Резерфорда — Бора из элементарных частиц были известны электрон, фотон и около 95 различных ядер. (Элементарной можно практически считать всякую частицу, которую трудно себе представить как состоящую из других частиц). Открытие в 1932 г. нейтрона (нейтральной частицы с массой, слегка превышающей массу протона) привело к представлению о ядрах как  [c.424]

Таким образом, несмотря на обилие разнообразных элементарных частиц, только некоторые из них играют очевидную роль в строении нормального вещества. Нейтроны и протоны вступают в связь между собой с образованием заряженных ядер. Вокруг ядра движется электронное облако, и все это вместе составляет атом. Атомы соединяются в молекулы. Большие совокупности молекул образуют макроскопические тела газы, жидкости, кристаллы... Ускоряемые электроны излучают или поглощают фотоны. Средством исследования переходов между стационарными атомными состояниями является спектроскопия,  [c.425]

Открытие первой элементарной частицы — электрона, в свою очередь, поставило перед исследователями множество проблем. В первую очередь следует упомянуть о проблеме строения атома, неделимость которого была опровергнута существованием значительно меньшей частицы (см. 7). Но сюрпризы, связанные с открытием электрона и исследованием его свойств, на этом не кончаются. Очень скоро удалось обнаружить, что масса электрона зависит от его скорости (рис. 17). Считавшееся до сих пор  [c.105]

Пространственные решетки (ПР), или решетки Брава, — наиболее общий (абстрактный) образ внутреннего строения кристалла (рис. 5. I). ПР получаем, если исключим все особенности химической природы составляющих его частиц — форму, размер и состав молекул,, атомов или ионов и вместо частиц будем рассматривать точки (узлы решет и) — центры тяжести частиц. По взаимному расположению узлов ПР все многообразие кристаллов сводится к 14 типам. ПР, или решетка Бравэ, характеризуется прежде всего группой трансляций (три) или параллелепипедом повторяемости — элементарной ячейкой (ЭЯ) (см. рис. 5.1). Параллельным переносом (трансляцией) элементарной ячейки в трехмерном пространстве и строят ПР. Трансляция — одна из операций симметрии, поэтому решетки Бравэ можно называть также трансляционными группами . Симметрия относительного располо-  [c.95]

Физика XX в., проникая все глубже в строение материи, вышла сначала на уровень атома, затем — атомного ядра и, наконец, на уровень элементарных частиц. Однако понятие элементарный относительно. Как сказал Ферми, возможно, что оно отражает уровень нашего понимания .  [c.78]

Атомы, электроны и ионы. По современным понятиям вещество имеет атомное строение, т. е. состоит из мелких частиц — атомов. Атом в свою очередь является совокупностью еще более мелких, электрически заряженных и нейтральных частиц. Наиболее простую систему представляет атом водорода. В его центре находится тяжелое ядро с элементарным положительным зарядом — протон, в котором практически сосредоточена вся масса атома. Вокруг ядра, под влиянием его притяжения, вращаются отрицательно заряженные частицы, называемые электронами. Ядро заряжено положительно, электроны имеют отрицательный заряд. Так как электроны обладают отрицательным зарядом, равным положительному заряду ядра, то атом электрически нейтрален.  [c.73]

Все тела в природе могут быть разделены на две группы кристаллические и аморфные. Кристаллические тела отличаются от аморфных своим внутренним строением и свойствами. Кристаллические тела характеризуются тем, что атомы или молекулы (элементарные частицы, из которых состоят все вещества) в них расположены в определённом строгом порядке. Правильное расположение атомов создаёт пространственную решётку, являющуюся основным признаком кристаллического тела. Если образованию кристаллического тела не мешают другие тела, то и внешняя форма его также получается правильной, сообразно его кристаллической решётке. Однако правильная внешняя форма тела не является обязательным признаком его кристаллического строения.  [c.7]

Соединение, полученное при сварке, характеризуется непрерывной структурной связью и монолитностью строения, достигаемыми за счет образования атомно-молекулярных связей между элементарными частицами сопрягаемых деталей. Для того чтобы произошла сварка, нужно сблизить соединяемые элементы на расстояние порядка величины атомного радиуса (10 см). При этом между поверхностными атомами твердых тел становится возможным межатомное взаимодействие и происходит сопровождаемое диффузией химическое взаимодействие.  [c.11]


Механическая прочность твердых тел определяется силами взаимодействия элементарных частиц (молекул, атомов, ионов), зависящими от строения этих часг.и и от расстояний между ними. При соединении между собой двух или большего числа твердых тел для обеспечения прочности места контакта необходимо сблизить соединяемые (свариваемые) материалы настолько, чтобы расстояние между элементарными частицами их было соизмеримо с периодом кристаллической решетки свариваемых материалов. Это обеспечивается механическим сдавливанием свариваемых материалов или переводом их у места контакта в жидкое состояние. В результате происходящих при этом физико-химических процессов (образование жидких или твердых растворов, совместная кристаллизация, диффузия в твердом состоянии, образование химических соединений и т. п.) они вступают в тесное взаимодействие, и соединение приобретает достаточную механическую прочность.  [c.220]

Исследование процессов столкновения служит мощным средством изучения природы ядерных сил и сил взаимодействия между элементарными частицами, изучения структуры отдельных атомов и молекул и исследования строения вещества в различных агрегатных состояниях.  [c.95]

Позднее, когда выяснилось, что строение атома сложно, понятие элементарности перенесли па ядра. Однако теперь мы знаем, что и ядра обладают сложным строением. Вообще можно сказать, что на каждом этапе развития пауки мы называем элементарными те частицы, строения которых не знаем и которые рассматриваем как точечные.  [c.7]

Предмет и метод теоретической физики. Одним из исходных понятий в науке является понятие структуры. Структура есть множество объектов, которые имеют прочные устойчивые связи между собой. Физика изучает простейшие материальные структуры — элементарные частицы, атомы, молекулы, тела, поля, системы тел и полей, их строение, взаимодействие и движение. Это объект всей физической науки, в том числе и теоретической физики.  [c.8]

Строение и дефекты твердых тел. Кристаллическая решетка — это присущее кристаллическому состоянию вещества регулярное расположение частиц (атомов, ионов, молекул), характеризующееся периодической повторяемостью, в трех измерениях. Полное описание кристаллической решетки дается пространственной группой, параметрами элементарной ячейки, координатами атомов в ячейке. В этом смысле понятие кристаллической решетки эквивалентно понятию атомарной структуры кристалла. Русский ученый Е. С. Федоров почти на 40 лет раньше, чем были найдены методы рентгеноструктурного анализа, рассчитал возможные расположения частиц в кристаллических решетках различных веществ. Он подразделил кристаллы на 32 класса симметрии, объединяющих 230 возможных пространственных групп. Кристаллы могут различаться по двойному лучепреломлению, по пьезо- и пироэлектрическим свойствам, образованию адсорбционных центров, работе выхода электронов и т. п.  [c.11]

От редакции. Настояа1ая глава не исчерп . -вает всех данных из области современной химии, применяемых в машиностроении. Ряд дополнительных данных содержится в главах 2-го тома (физико-химические и механические свойства чистых металлов, Теория и расчеты процессов горения) б-го тома (Чугун, Сталь, Цветные металлы и сплавы),5-го тома (Электрические и химико-механические способы размерной обработки металлов. Технология термической и химико-термической обработки металлов, Технология покрытий деталей машин, Технология производства металлоке-рамнческих деталей). Подробные данные по ряду вопросов можно найти в приведенных ниже литературных источниках. Так, например, общие законы химии и свойства химических элементов и их соединений изложены в источнике [29] основные положения органической химии и общие свойства органических соединений — в (9], [38] строение атома, свойства элементарных частиц, теория  [c.315]

Френкель Яков Ильич (1894-1952) — советский физик-теоретик. Окончил Петроградский университет (1916 г.), работал в Физико-техническом институте и в Политехническом институте в Ленинграде. Научные работы относятся ко многим разделам физики (строение твердых и жидких тел, физика ядра и. элементарных частиц, физика твердого тела, магнетизм) и в ряде направлений были пионерскими. Независимо от Н. Бора разработал в 1936 г. капельную модель ядра, независимо от В. Гейзенберга — первую квантовомеханическую модель ферромагнетизма. В 1930 г. со.чдал теорию доменного строения ферромагнетиков, предложил теорию движения атомов и ионов в кристаллах. Развил теорию вырожденного релятивистского газа, сформулировал (1939 г.) основы теории спонтанного деления тяжелых ядер. Автор более 300 статей и двадцати книг.  [c.369]

Теплоемкости определяются экспериментально (калориметрически), но они могут быть и вычислены теоретически, исходя из строения элементарных частиц и всего вещества в целом с достаточной степенью точности. При расчете теплоемкостей и энтальпий газов при высоких температурах, когда поглощение энергии газообразным веществом происходит вследствие возрастания энергии поступательного движения молекул, вращательного движения сложных молекул, колебательного движения атомов внутри молекул и расхода энергии на возбуждение электронных оболочек атомов, а в случае высокотемпературной плазмы (- 10 K) и на возбуждение ядерных структур (термоядерные реакции). Суммируя все расходы энергии, можно в общем виде представить уравнение теплоемкости газа следующим уравнением  [c.255]


Последовательность различных курсов как общей, так и теоретической физики определяется прежде всего постепенным переходом к изучению все более сложных форм движения соответствующих структурных видов материи (макротела, молекулы, атомы, элементарные частицы и поля). Механика изучает закономерности простейшей формы движения — относительного перемещения тел в пространстве во времени. Термодинамика и статистическая физика рассматривают явления, обусловленные совокупным действием огромного числа непрерывно движущихся молекул или других частиц, из которых состоят окружающие н с тела. Благодаря очень большому количеству частиц беспорядочное их движение приобретает новые качества макроскопические свойства систем из большого числа частиц в обычных условиях совершенно не зависят от начального положения этих частиц, в то время как механическое состояние системы существенно зависит от начальных условий. Это один из примеров диалектического закона перехода количестЕ енных изменений в качественные возрастание количества механически движущихся частиц в системе порождает качественно новый вид движения — тепловое движение. Тепловое движение представляет собой изменения системы, обусловленные ее атомистическим строением и наличием огромного числа частиц оно связано с молекулярным механическим движением, но этим не исчерпывается его сущность. Всякое движение, — писал Ф. Энгельс, — заключает в себе механическое движение, перемещение больших или мельчайших частей материи познать эти механические движения является первой задачей науки, однако лишь первой ее задачей. Но это механическое движение не исчерпывает движения вообще. Движение — это не только перемена места в надмеханических областях оно является также и изменением качества. Открытие, что теплота представляет собою некоторое молекулярное движение, составило эпоху в науке. Но если я не имею ничего другого сказать о теплоте кроме того, что она представляет собой известное перемещение молекул, то лучше мне замолчать . Определяющим для возникновения теплового движения является не механическое движение от-  [c.7]

МАГНЕТИЗМ МИКРОЧАСТИЦ — магн. свойства молекул, атомов, атомных ядер и субъядерных частиц (т. н. элементарных частиц). Магн. свойства элементарных частиц обусловлены наличием у них снина, а Оолее сложных снсто.м (ядер, атомов, молекул) — осо-бонностямн пх строения и вкладс1, т о суммарный магие-микросистемы отд. составляющих её частиц.  [c.635]

Сведения о строении материи. Все тела представляют собой совокупность разного сорта моле1дгл и атомов. Данные о строении элементарных частиц  [c.113]

Расшифровка атомных и молекулярных спектров — установление связи между строением спектра и явлениями, происходяп ими в атомах и молекулах, давшее прочный фундамент оптическому спектральному анализу,— стала возможной лишь после того, как был отброшен предрассудок, что явления в микромире (в мире электронов и других элементарных частиц, атомов и молекул) подчиняются законам классической физики, частью которой является классическое учение о колебаниях и волнах. Законы классической физики были установлены в результате опытного изучения движения макротел (тел, содержап их громадное число атомов), электрических макротоков (токов, в которых участвует огромное число электронов) и т. д. Законы микромира оказались иными.  [c.566]

Крупным шагом вперед по пути развития наших представлений о внешнем мире было открытие атомно-молекулярного строения веществ. Это открытие стало возможным только после длительного процесса накопления конкретных сведений о веществах, их составе и превращениях. Оказалось, что все основные свойства данного вещества несет в себе мельчайшая частичка этого вещества — молекула. Все молекулы данного вещества одинаковы, причем состав их не зависит от способа образования. Различных молекул имеется столько, сколько имеется различных веществ. Однако, и в этом была особенная ценность сделанного открытия, все огромное многообразие различных веществ можно представить в виде различнЬхх комбинаций из сравнительно небольшого (около 100) кодшчест-ва простейших элементов, носителями всех основных свойств которых являются частицы размерами около 10" см, называемые атомами. Атом в переводе с греческого означает неделимый , т. е. в известном смысле — элементарный. Если вспомнить, что до конца XIX в. о строении атома ничего  [c.129]

Таким образом, к 1932 г. схема строения атома в значительной степени, определилась. Было установлено, что все атомы состоят из электронов и атомных ядер, которые в свою очередь состоят из протонов и нейтронов. Атомы и ядра различных веществ отличаются числом содержащихся в них электронов, протонов и нейтронов. При известных условиях можно изменить число содержащихся в атоме электронов (ионизация) или число содержащихся в ядре нуклонов (ядерная реакция). В результате таких, процессов из одних ядер и атомов получаются другие. Таким( образом, в некотором смысле атомы и ядра можно считать простым объединени1 м трех видов частиц — протонов, нейтронов и электронов. В связи с этим естественно было назвать эти частицы элементарными.  [c.132]

ФАКТОР <есть причина, движущая сила какого-либо процесса, явления, определяющая его характер или отдельные его черты магнитного расщепления — множитель в формуле для расщепления уровней энергии, определяющий величину расщепления, выраженный в единицах магнетона Бора размагничивающий— коэффициент пропорциональности между напряженностью размагничивающего магнитного поля образца и его намагниченностью структурный—величина, характеризующая способность элементарной ячейки кристалла к когерентному рассеянию рентгеновского излучения, гамма-излучения и нейтронов в зависимости от внутреннего строения ячейки) ФЕРРИМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты ионов, входящих в его состав, образуют две или большее число подсистем (магнитных подрещеток) ФЕРРОМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты атомов или ионов самопроизвольно ориентированы параллельно друг другу ФИЛЬТРАЦИЯ—движение жидкости или газа через пористую среду ФЛУКТУАЦИЯ <есть случайное отклонение значения физической величины от ее среднего значения, обусловленное прерывностью материи и тепловым движением частиц абсолютная — величина, равная корню квадратному из квадратичной флуктуации квадратичная 01ли дисперсия) равна среднему значению квадрата отклонения величины от ее среднего значения относительная равна отношению абсолютной флуктуации к среднему значению физической величины) ФЛУОРЕСЦЕНЦИЯ — люминесценция, быстро затухающая после прекращения действия возбудителя свечения ФОРМУЛА (барометрическая — соотношение, определяющее зависимость давления или плотности газа от высоты в ноле силы тяжести Больнмаиа показывает связь между энтропией системы и термодинамической вероятностью ее состояния Вина устанавливает зависимость испускательной способности абсолютно черного тела от его частоты в третьей степени и неизвестной функции отношения частоты к температуре)  [c.292]

Природа металла, строение его атомов (число неспаренных, валентных электронов), зарядность ионов, размер структурных частиц (ион-атомов), та или иная плотность упаковки, зависящая от вида элементарной кристаллической ячейки, оказывают в своей совокупности большое влияние на физические и механические свойства металлов плотность, твердость, пластичность, сжи-  [c.34]


Смотреть страницы где упоминается термин Строение атома и элементарные частицы : [c.11]    [c.152]    [c.22]    [c.200]    [c.308]    [c.658]    [c.18]    [c.432]    [c.35]   
Смотреть главы в:

Справочник по элементарной физике  -> Строение атома и элементарные частицы



ПОИСК



28—31 — Строение

Атомы Строение

Мир атома

Частицы элементарные



© 2025 Mash-xxl.info Реклама на сайте