Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задача о круговой арке

Задача 20. Дана сочлененная с помощью шарнира С система двух тел (рис. 79). Балка АС, изогнутая под прямым углом, имеет заделку в точке А. Круговая арка СВ закреплена в точке В с помощью стержня, имеющего на концах шарниры. На сочлененную систему действуют 1)силы, распределенные вдоль вертикального прямого отрезка АЕ  [c.111]

Здесь изучены также задачи о параметрических колебаниях круговой арки проведена оценка результатов, получающихся при линейной и нелинейной трактовках задач, и др.  [c.9]


Изменения спектров при изменении формы стержней с одним геометрическим параметром. Расчет 3. Задача о колебаниях круговой арки (рис. 7). Исследуются изменения пяти низших частот при изгибании прямого стержня по дуге окружности. Длина стержня сохраняется постоянной, центральный угол ф увеличивается от О до 2я, при этом радиус соответственно уменьшается. Оба конца заделаны, pj = = 20, б = 10-  [c.28]

Уравнения (4.5.1), (4.4.4) — (4.4.6), (4.5.2), (4.4.9) составляют полную систему зависимостей, на основе которых могут быть получены решения задач об устойчивости равновесия цилиндрической панели (только эта задача и будет рассматриваться) и круговой арки. Решение задачи устойчивости начнем с преобразования уравнений нейтрального равновесия (4.5.1), в которых й, iv  [c.124]

Чтобы дать себе отчет о степени приближения наших расчетов в случае разложения арки на различное число отдельных клиньев, применим этот метод к случаю, когда интегрирование членов формулы не представляет особых затруднений. Пусть, например, необходимо найти распор в круговой арке постоянного сечения при центральном угле а=28° под действием вертикальной нагрузки, равномерно распределенной по пролету. Точное решение задачи получается при помощи формулы (43). Чтобы рассчитать распор с помощью формулы Симпсона, применим равенство (25), если  [c.458]

Подобным же образом решается задача об устойчивости части равномерно сжатого кольца. Возьмем, например, случай двухшарнирной круговой арки, подвергающейся действию равномерного нормального давления интенсивности д (рис. 68). Так как в этом случае точки А ш В при выпучивании сжатой арки не смещаются, то давление 8 в этих точках не изменяет своей величины, и мы получим дифференциальное уравнение для искривленной формы, представленной на рисунке, если в уравнении (а) положим щ = О, = 0. Тогда  [c.306]

Второй вариант представляет собой своеобразную задачу о вынужденных колебаниях применительно к балкам эта задача была решена еще в 1905 г. А. Н. Крыловым. Указанное решение приемлемо в тех случаях, когда речь идет о движении относительно легких грузов по сравнительно массивной конструкции. В этой постановке рассматривались также задачи о движении сосредоточенной силы по круговой арке и о движении силы по балке с переменной скоростью.  [c.100]

Задача 207. Для круговой арки (фиг. 382), нагруженной сосредоточенной вертикальной силой Р в сечении С, составить выражения для изгибающих моментов, нормальных и поперечных сил в зависимости от <р.  [c.377]

Задача 220. Круговая арка А В (фнг. 397, а) опирается на неподвижные шарнирные опоры А и В. Найти реакции опор при действии груза Р.  [c.392]


В данном параграфе в основном пойдет речь о решении ряда сложных собственно смешанных задач теории упругости методом кусочно-однородных решений [193]. Он основан, как и метод однородных решений, на построении функций, точно удовлетворяющих уравнениям теории упругости и граничным условиям в полосе, клине, цилиндре и конусе, причем в данном случае рассматриваются собственно смешанные условия. При помощи системы указанных функций можно удовлетворять граничным условиям на торцах перечисленных бесконечных областей, не внося изменений в смешанные условия иа боковых поверхностях, и решать задачи для полуполосы и прямоугольника, для клина и круговой арки, для полубесконечного и конечного цилиндра, усеченного конуса и сферического кольца. Эти задачи имеют важные приложения в технике и являются элементами, на которые благодаря симметрии расчленяются различные более сложные смешанные задачи для конечных и бесконечных упругих областей с несколькими или периодически расположенными линиями раздела граничных условий.  [c.238]

Задача о круговой арке  [c.436]

Мы рассматриваем круговую арку радиуса R (рис. 8.3.1) и для определенности будем предполагать, что арка закреплена. Если положить физические постоянные ЕА и EI равными единице в энергии (8.1.30), то вариационная задача будет соответствовать следующим данным (отметим изменение знака, так как в данном случае R — положительная постоянная)  [c.437]

Рассмотрим задачу о несущей способности круговой двухшарнирной арки, нагруженной сосредоточенной силой 2Р в вершине арки (рис. 5.6) с двухслойным и однослойным сечениями [57]. Вопросы потери устойчивости не рассматриваются.  [c.154]

Главным недостатком описанных выше элементов является неудовлетворительная эппроксимеция смещений элемента как твердого целого. Поясним зто на примере круговой арки. Эта задача является пробным камнем на пути построения двумерных искривленных элементов, поскольку круговой арке присущи ооновнне качества всех искривленных конструкций, а именно имеется взаимосвязь перемещений при аппроксимации деформаций. Поэтому мы будем часто иллюстрировать все построения на примере арки или кривого бруса, что является общепринятым.  [c.40]

Рассмотрим симметричную деформащпо круговой арки жесткой полуплоскостью (рис. 4.11) [352]. Задачу будем реовкгь на основе уравнений (43.2), обозначив нормальную распределенную нагрузку взаимодействия арки с полуплоосостью через q . При этом трением будем  [c.124]

Рассмотрим слоистую изотропную длинную круговую цилиндрическую панель радиуса R и толщины h, несущую поперечную нагрузку. Используем систему координат ip, у, Z, описанную в предыдущем параграфе. Примем, что длина панели достаточно велика, условия ее опирания и нагружения не зависят от координаты у и рассмотрим задачу о выпучивании панели по цилиндрической поверхности. Целесообразно одновременно рассматривать задачу об устойчивости круговой арки единичной ширины, которую будем представлять себе вырезанной" из панели двумя нормальными сечениями у = с, у = с+1 (с = onst). Уравнения этой задачи, как будет видно из дальнейшего, лишь значениями некоторых коэффициентов отличаются от уравнений выпучивания панели по цилиндрической поверхности. Уравнения нейтрального равновесия получим из уравнений (3.5.10), в которых следует учесть, что для обеих рассматриваемых конструкций вариации составляющих тензора напряжений равны нулю.  [c.123]

Паша цель — проанализировать неконформпый метод для решения простейшей задачи, сходной с задачей об оболочке, а именно задачи о круговой арке.  [c.436]

Явление хлопка, т. е. мгновенного перехода из одного состояния равновесия з другое, типи шо для оболочек. Как правило, длина волны, образующейся при хлопке, невелика и поэтому можно рассматривать элемент оболочки, претерпевающий хлопок, как пологий. Более простая задача, обнаруживающая те же качественные особенности, это задача об устойчивости пологой арки, например кругового очертания, как показано на рис. 4.6.1. Пологость понимается з данном случае в том смысле, что угол а < 1. Если, как показано на рисунке, арка загружена равномерным давлением, действующим с вьшуклой стороны, то, как оказывается, при некотором значении давления q = q p происхо-  [c.127]


Отсутствие достаточно полного аналитического решения задачи плоского деформирования кругового стержня способствовало тому, что в ряде работ [4, 184, 258] рекомендуется заменять криволинейные стержни набором прямолинейных стержней. Такая модель достаточно хорошо отражает поведение криволинейных стержней только при большом числе заменяюш,их стержней. В работе [93] показано, что погрешность полигональной аппроксимации кругового стержня не превышает 1,0 %, если прямолинейный стержень стягивает дугу криволинейного стержня примерно в 5 градусов. Таким образом, кольцо может быть представлено правильным многоугольником из 72 стержней, а арка в 90° - 18 стержнями. Далее расчет стержневой системы может быть выполнен МКЭ, методом сил и другими методами.  [c.88]

В области проектирования арочных мостов инженеры проодол-жали рассматривать каменную арку как систему абсолютно жестких каменных блоков, хотя, как мы уже видели (стр. 180), еще Бресс дал полное решение для упругой арки с заделанными пятами. Понятия кривой давления и линии сопротивления были введены в исследование арок около 1830 г. Ф. Герстнеру (F. J. Gerstner) ), по-видимому, следует приписать первое исследование пиний давления. Поводом к тому послужили вопросы проектирования висячих мостов, в связи с чем он излагает свойства цепной линии и составляет таблицы для построения этой кривой. Там же он указывает, что эта кривая, повернутая вокруг горизонтальной оси, лучше всего отвечает и очертанию арки постоянного поперечного сечения. Такая арка под действием собственного веса работает на одно только сжатие. Поскольку в его время 30 всеобщем применении были круговые и эллиптические арки, Герстнер занимается вопросом, как нужно распределить по пролету арки нагрузку, чтобы эти кривые, т. е. дуги окружности или эллипса, совпали с кривыми давления. На практике, как он указывает, распределение нагрузки отклоняется от указываемого теорией для идеального случая это значит, что в действительности материал арки подвергается не только сжатию, но и изгибу. Он обращает также внимание на то, что задача эта— статически неопределенная и что возможно построить бесконечное множество кривых давления, удовлетворяющих условиям равновесия и проходящих через различные точки ключевого сечения и пят. Каждой из таких кривых соответствует некоторое значение горизонтального распора Н. Чтобы сделать задачу статически определенной, Герстнер вводит, в заключение, некоторые произвольные допущения относительно положения истинной кривой давления.  [c.256]

Клебш первый занялся исследованием задачи плоского напряженного состояния и дал решение для круглой пластинки (см. с тр. 310). Другой случай, имеющий большое практическое значе-лие, был решен Харлампием Сергеевичем Головиным (1844— 1904) ). Он заинтересовался деформациями и напряжениями круговых арок постоянной толщины. Рассматривая задачу как двумерную, он сумел получить решения для систем, представленных на рис. 170. Он находит, что в условиях чистого изгиба (рис. 170, а) поперечные сечения остаются плоскими, как это обычно и принимается в элементарной теории кривого бруса. Но найденное им распределение напряжений не совпадает с тем, которое дается элементарной теорией, поскольку последняя предполагает, что продольные волокна испытывают лишь напряжение о, простого растяжения или сжатия, между тем как Головин доказывает существование также и напряжений а , действующих в радиальном направлении. При изгибе же, производимом силой Р, приложенной к торцу (рис. 170, б), в Киждом поперечном сечении возникают не только нормальные напряжения, но также и касательные, причем распределение последних не следует параболическому закону, как это предполагается в элементарной теории. Головин вычисляет не только напряжения для такого кривого бруса, но также и его перемещения. Имея формулы перемещений, он получает возможность решить и статически неопределенную задачу арки с защемленными пятами. Проделанные им вычисления для обычных соотношений размеров арок показывают, что точность элементарной теории должна быть признана для практических целей вполне достаточной. Исследования Головина представляют собой первую попытку применения теории упругости в изучении напряжений в арках.  [c.419]

Арки и рамы. В. П. Тамуж (1962) рассмотрел движение круговой жестко-пластической арки под действием приложенной в центре сосредоточенной нагрузки. Предполагалось, что движение арки, аналогично-статическому деформированию, происходит с образованием трех пластических шарниров. Далее автор использовал для определения двух независимых параметров, характеризующих механизм деформирования, принадлежащий ему же вариационный принцип, в результате чего задача свелась к решению двух трансцендентных уравнений. Для подтверждения правильности полученных решений необходимо, кроме того, убедиться, что предел текучести не превышен в жестких частях арки. Полученная картина движения в общем удовлетворительно подтверждается экспериментом. Данная работа интересна также как первый пример использования в динамике неупругого тела математического аппарата квадратичного программирования. Если разбить дугу арки на п равных частей, то согласно (2.3) задача сведется к отысканию минимума некоторой квадратичной функции при линейных ограничениях, т. е. к задаче квадратичного программирования. Для решения этой задачи автор предлагал использовать метод Уолфа.  [c.318]


Смотреть страницы где упоминается термин Задача о круговой арке : [c.497]    [c.681]    [c.19]    [c.179]    [c.106]    [c.218]   
Смотреть главы в:

Метод конечных элементов для эллиптических задач  -> Задача о круговой арке



ПОИСК



Аркал 809, XIV

Задача Дирихле однородная круговой арке

Задача об арке

К< п арко

Метод Галеркння для 1еомегрии для задачи о круговой арке

Метод Галеркння для геометрии для задачи о круговой арке

Метод Галеркння перемещений для задачи о круговой арке

Ось арки



© 2025 Mash-xxl.info Реклама на сайте