Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Группа IVA. Металлы олово, свинец

Нами исследовались различные комбинации из веществ, участвующих в процессе образования защитных покрытий переносом через жидкую фазу. В качестве материалов подложки использовались металлы группы молибдена и графит. Жидкой средой-переносчиком служили жидкие легкоплавкие металлы — олово, свинец, цинк, висмут, кадмий, алюминий. Материалами для покрытия являлись для графита — карбидообразующие металлы — молибден, цирконий, ниобий, титан, кремний и др., а для легкоокисляющихся металлов — хром, алюминий, кремний и др.  [c.121]


Группа IVA. Металлы олово, свинец  [c.262]

В основу этой книги положены данные, полученные в лаборатории электроосаждения металлов Института физической химии АН СССР. Б ней рассматривается электрохимическое поведение различных металлов, представляющих отдельные группы периодической системы элементов. При этом из каждой группы или подгруппы выбраны именно те металлы, электрохимические свойства которых изучены наиболее полно. Вначале рассматриваются серебро, цинк, олово, свинец, осаждение и растворение которых протекает без особых затруднений. Затем несколько глав посвящено электрохимическому поведению железа, никеля.  [c.3]

В общем, за несколькими исключениями, стоимость увеличивается от метода горячего погружения к электроосаждению, распылению и плакированию. Группа самой низкой стоимости металлов включает цинк, железо и свинец, в промежуточную группу по стоимости входят никель, олово, олово— свинец, кадмий н алюминий и наиболее дорогими являются серебро, палладий, золото и родий.  [c.397]

Цветными металлами в технике принято называть большую группу металлов, в числе которых наибольшее распространение получили медь, алюминий, никель, магний, титан, свинец, цинк, олово, сурьма, висмут, золото, серебро, платина и др.  [c.277]

Плавкость— способность металла расплавляться при определенной температуре, называемой температурой плавления. По температуре плавления все металлы также условно разделяются на две группы 1) легкоплавкие — металлы, температура плавления которых ниже 800—1000° (олово, свинец, алюминий, магний и др.) 2) тугоплавкие —металлы, имеющие температуру плавления выше 800—1000° (железо и его сплавы, медь и некоторые ее сплавы, никель и др.).  [c.7]

Цветные металлы, в свою очередь, подразделяют в зависимости от их физико-механических свойств на ряд групп тяжелые (никель, медь, цинк, олово, свинец), легкие (литий, бериллий, натрий, магний, алюминий, калий, кальций, титан, рубидий, стронций, цезий, барий) благородные (рутений, родий, палладий, серебро, осмий, платина, золото) и редкие, которые, в свою очередь, условно делят на тугоплавкие (ванадий, цирконий, ниобий, молибден, тантал, вольфрам), редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.), рассеянные (германий, селен, рений и др.) и радиоактивные (радий, торий, протактиний, уран).  [c.5]

Группа II — амфотерные металлы, достаточно устойчивые в нейтральной области, но нестойкие в кислой и щелочной q)e-дах. Это цинк, алюминий, олово, свинец (рис- 34, б).  [c.66]

Все металлы разделены на пять групп I группа — магний II — цинк, алюминий, кадмий III — железо, углеродистые стали, свинец, олово IV — никель, хром, хромистые стали, хромоникелевые стали V — медноникелевые сплавы, медь, серебро. Допустимым считается контакт металлов, входящих в одну и ту же группу. Металлы каждой последующей группы усиливают коррозию металлов предыдущей группы. Внутри группы металлы подвергаются коррозии, находясь в контакте с.металлами, расположенными в группе за ними.  [c.99]


При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний II — алюминий, цинк, кадмий III — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 н 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото.  [c.74]

Олово и свинец — металлы, имеющие низкие температуры плавления, обладают высокой пластичностью и коррозионной стойкостью. На их основе изготовляются мягкие припои. Припои этой группы изготовляются также на базе цинка и меди.  [c.441]

Состав золотосодержащих материалов очень сложен и непостоянен. В них, кроме золота, могут присутствовать серебро, медь, свинец, сурьма, мышьяк, олово, висмут и другие примеси, а в ряде случаев и металлы платиновой группы. Все примеси неблагородных металлов называют лигатурой. Содержание примесей колеблется в очень широких пределах —от долей пробы до 200—600 проб. Для опробования этих материалов проводят приемную плавку.  [c.313]

Все ковалентные структуры следуют правилу (8—N), т. е. каждый атом имеет (8 — N) ближайших соседей N — порядковый номер группы). С увеличением атомного номера для элементов данной группы прочность ковалентной связи и тенденция к образованию решетки по правилу (8—N) уменьшаются. Так, элементы IV группы — углерод, кремний, германий, олово (серое)— имеют одинаковую тетраэдрическую решетку алмаза, а их температуры плавления соответственно равны 5000, 1420, 960 и 232°С (последняя температура приведена для белого олова температура перехода белого олова в серое составляет 13° С). Свинец (та же группа, VI период) является металлом.  [c.20]

Металлами называются химически простые вещества,, отличающиеся хорошим блеском, высокими тепло- и электропроводностью, непрозрачностью, плавкостью некоторые из металлов обладают способностью коваться и свариваться. Металлы и их сплавы делят на черные и цветные. К черным относят железо и сплавы на его основе — чугун и сталь, а также ферросплавы. Остальные металлы составляют группу цветных. Вся современная индустрия базируется главным образом на применении черных металлов. Из цветных металлов наиболее важное промышленное значение имеют медь, алюминий, свинец, олово, никель, титан и др. Цветные металлы обладают рядом ценных физико-химических свойств, которые делают их незаменимыми в технике. Например, медь и алюминий, имея высокие тепло- и электропроводность, играют важную роль в электротехнической промышленности алюминий благодаря малой плотности используется также в авиационной промышленности олово обладает высокой коррозионной стойкостью, применяется для получения белой жести и лужения котлов, а в сплаве со свинцом используется в производстве подшипников.  [c.5]

К первой группе относятся способы защиты, основанные на изоляции поверхности металла от внешней среды. Так, например, на предохраняемую поверхность наносят слой антикоррозионного металла, краски, лака, эмали, пластмассы, смазки, окисной пленки и т. д., чем достигается изоляция поверхности металла и защита его от коррозии. В качестве антикоррозионного металла используют цинк, хром, никель, свинец, олово, алюминий, серебро, золото и др.  [c.10]

К черным металлам относятся железо и железные сплавы — чугун, сталь. В группу цветных металлов входят медь, алюминий, магний, цинк, свинец, олово и их сплавы, никель, хром и др. Сплавами цветных металлов являются латунь, бронза, баббит, различные припои.  [c.3]

С напряжениями сжатия обычно осаждаются цинк, кад.мий, свинец, олово. Эти металлы относятся к группе мягких металлов и их зерна, следовательно, могут легко деформироваться при давлении, оказываемом друг на друга. Поэтому напряжения, возникающие в этих металлах, должны и.меть меньшее значение, чем для твердых металлов. С другой стороны, тесное соприкосновение зерен может вызвать протекание на их границах кристаллизационных процессов, связанных с увеличением объема межзеренных границ, что приведет к возникновению напряжений сжатия. По-видимому, адсорбция органических или других частиц на границах зерен также будет влиять на из.менение внутренних напряжений. Если после формирования осадка перестройка адсорбированных частиц сопровождается 44  [c.44]


Различают две основные группы материалов металлы и их сплавы и неметаллические материалы. Металлы и сплавы бывают черные и цветные. К черным металлам относятся железо и сплавы на его основе сталь и чугун. К цветным относят все остальные металлы алюминий, медь, титан, магний, свинец, олово, никель и т. д. В современной технике используется около 65 наименований цветных металлов.  [c.10]

Многочисленные цветные металлы в свою очередь подразделяются в зависимости от физико-механических свойств на ряд групп тяжелые (медь, никель, свинец, цинк, олово) легкие (алюминий, магний, кальций, бериллий, титан, литий, барий, стронций, натрий, калий, рубидий, цезий) благородные (золото, серебро, платина, осмий, рутений, родий, палладий) редкие металлы. Последние в свою очередь условно делят на тугоплавкие (вольфрам, молибден, ванадий, тантал, ниобий, цирконий) редкоземельные (скандий, иттрий, лантан, церий, празеодим, неодим, самарий, европий и др.) рассеянные (германий, рений, селен и др.) и радиоактивные (уран, торий, радий, протактиний).  [c.20]

Исторически сложилась промышленная классификация металлов на две основные группы черные и цветные. К черным металлам относится железо и его сплавы (чугун, сталь, ферросплавы), а также марганец и хром. Все остальные металлы объединены в общую группу цветных, которая в свою очередь подразделяется на легкие (алюминий, магний, титан и др.), тяжелые (медь, никель, свинец, цинк, олово), малые цветные металлы (кобальт, кадмий, молибден, вольфрам, сурьма, ртуть, висмут), благородные (золото, серебро, платина и платиноиды), а также редкие и радиоактивные металлы.  [c.10]

Выступая в роли деполяризаторов (акцепторов электронов), радикалы и перекиси восстанавливаются в нейтральные молекулы, что приводит к уменьшению окисления масла, образования кислых коррозионно-агрессивных соединений и к уменьшению химической (и электрохимической) коррозии металла. На аналогичном эффекте — протекторной защите — основано применение так называемых твердых антиокислителей — патронов, состоящих из сплавов натрия, лития, магния и цинка, или натрия, олова и свинца, или кальция, бария, цинка, свинца и пр. [107]. Эти патроны устанавливают в картере двигателей или в системе циркуляции масла после фильтров тонкой очистки. Ввиду больших стандартных электродных потенциалов вышеуказанных металлов они прежде всего подвергаются электрохимической коррозии, выполняя роль анода (протектора) по отношению к другим деталям двигателя. Целесообразность применения подобных патронов косвенно подтверждается многочисленными исследованиями коррозионных процессов в двигателях. Например, из сплавов вкладышей подшипников, деталей цилиндро-порш невой группы и прочих прежде всего вымываются - переходят в электролит и масло — металлы с высокими стандартными электродными потенциалами <свинец, магний, цинк, олово и пр.), а также металлы, дающие высокую разность потенциалов в контакте металл — металл .  [c.80]

В 1968—1969 гг. в серии работ напр., [428] ) было развито представление о возможности растворения и диффузии ряда благородных и переходных металлов (меди, серебра, железа, кобальта) в элементах III и IV групп (таллий, индий, свинец, олово и др.) по механизму внедрения при не слишком большом размере и малой валентности диффундирующего атома (валентность растворителя должна быть больше валентности примеси). Как показывают оценки, доля атомов, диффундирующих по механизму внедрения, по отношению к движущимся по вакансион-ному механизму достаточно велика, так что этим можно обт яс-нить аномальный характер диффузии в указанных системах, в частности очень низкие значения энергии активации. Дальнейшие исследования с целью подтвердить справедливость предложенного объяснения и установить степень общности полученных результатов представили бы несомненный интерес.  [c.158]

Металлы каждой последующей группы усиливают коррозию металлов предыдущей группы. Коррозия может, однако, наблюдаться и в пределах одной группы. Металлы первого ряда, как правило, подвергаются коррозии, находясь в контакте с металлами, расположенными в рядах ниже. Однако могут быть условия, в которых будет наблюдаться и обратное явление. Например, в одних условиях алюминий, находящийся в контакте с цинком, корродирует, а в других он защищается электрохимически коррозия меди может усиливаться- при контакте с никелем или нержавеющими сталями. Алюминиевые сплавы, богатые медью, в контакте с алюминием или сплавами, бедными медью, вызьь вают коррозию последних. Олово и свинец являются катодами в паре с железом. В пористых гальванических покрытиях они способствуют усилению коррозии железа. Однако ввиду наличия большой катодной поверхности и малой анодной наблюдается сильная анодная поляризация, благодаря которой катодный ток резко уменьшается. В общем можно сказать, что в пределах каждой группы металлов контактная коррозия все же невелика.  [c.130]

Миллон , а затем Диверс" и Хедже по действию азотной кислоты на металлы разделили их на две группы металлы первой группы (медь, серебро, висмут и ртуть) при растворении в азотной кислоте образуют азотистую кислоту, нитраты и воду металлы второй группы (цинк, кадмий, магний, свинец, олово, железо и щелочные металлы) образуют аммиак или гидроксиламин, или и то и другое. Миллон , исследуя скорость растворения меди, ртути и висмута в азотной кислоте, заметил, что чистая азотная кислота не растворяет эти металлы, но если к азотной кислоте прибавить немного нитрита калия, тотчас же начинается энергичное растворение этих металлов. Растворение металлов в азотной кислоте может тормозиться некоторыми веществами, например сульфатом двухвалентного железа, который разрушает образовавшуюся азотистую кислоту. Исходя из этого, Мил-лон сделал предположение, что причиной ускоренного растворения металлов в азотной кислоте является присутствие в ней азотистой кислоты.  [c.90]


При взаимодействии серы с большинством металлов при повышенных температурах образуются сульфиды и полисульфиды. Исключение составляют золото и некоторые металлы платиновой группы. Жидкий бром взаимодействует уже при комнатной температуре со многими металлами. К ним относятся медь, серебро, алюминий, олово, свинец, титан, ванадий, ниобий, хром, молибден, вольфрам, железо, кобальт, никель. Чистые жидкие органические неэлектролиты типа бензола, хлороформа не вызывают коррозии металлов. Ряд примесей, которые могут содержаться в них, например иод, вода, способствуют коррозии металлов. Серебро с иодом, растворенным в хлороформе, взаимодействует при комнатной температуре с образованием пленки иодида серебра. Проведенные исследования показали, что скорость взаимодействия серебра с иодом контролируется скоростью диффузии иода через пленку иодвда серебра, что и определяет параболическую зависимость толщины пленки от времени коррозии.  [c.30]

Группа д—металлы, стойкие только в нейтральной среде. К ним относятся алюминий, цинк, олово, свинец. Особенностью этих металлов является образование ам-фотерных гидроксидов, одинаково хорошо растворяющихся в кислой и щелочной средах.  [c.73]

В. Е. Кемпбелл [12] различает следующие типы твердых смазок 1) слоистые (графит, двусернистый молибден, нитрид бора) 2) органические соединения (мыла, воски и жиры) 3) химически активные покрытия (сульфидные, хлоридные, фосфидные, фосфатные, оксидные и др.) 4) мягкие металлы (индий, свинец, олово, цинк, медь, барий) 5) полимерные пленки 6) различные пластичные материалы. Е. Р. Брейтуэйт [2] считает, что можно выделить такие группы твердых смазок 1) структурные 2) протекторные механические (металлы, пластмассы) 3) мыла 4) химически активные 5) экспериментальные 6) огнеупорные материалы, керамика, стекло.  [c.233]

Твердость, прочность и износостойкость являются основными свойствами, не обязательно взаимосвязанными. Например, прн трении между двумя поверхностями твердых металлов может быть более высокая износостойкость, чем износостойкость между двумя поверхностями мягких металлов. В общем случае контакт при треиии между твердым и мягким металлом приводит л износу более мягкого металла. Однако механические факторы реальной конструкции могут менять это взаимоотношение по износостойкости, так что износ более твердых материалов происходит в более широких пределах, например случай быстрого износа, патефонной иглы при треиин ее о виниловую поверхность. В общем, самыми твердыми являются покрытия хромом, никелем и родием железо, медь, цинк, кадмий и серебро относятся к группе со средней твердостью олово, свинец, золото и нндий являются относительно мягкими.  [c.397]

Большая группа металлов, а также многие сплавы и ряд химических соединений обладают явлением сверхпроводимости. Существо его состоит в том, что иже крити-ческ( й температуры, различной для разных веществ, но расположенной обычно а несколько градусов выше абсолютного нуля, элект росопротивле1ние скачкообразно падает, ириближаясь к нулю (свинец, олово, ртуть, цинк и др.).  [c.10]

ХРОМ, Сг, химич. элемент VI группы перио- дич. системы (аналог молибдена, вольфрама и урана) ат. в. 52,01 изотопы 50 (4,9%), 52 <81,6%), 53 (10,4%) и 54 (3,1%) порядковое чис-J O 24. X.—белый блестящий металл. Твердость весьма значительна—режет стекло содержание углерода (l,5-f-3%) повышает твердость до 9 (по Мосу). Кристаллизуется X. в кубич. системе (пространственно-центрированный куб, радиус атома 1,25 Л). Уд. в. б,9- 7,2. Вследствие затруднительности получения абсолютно чистого X. данные о колеблются в пределах 1 520 -М 765° 2 200°. В отношении химич. свойств X. характеризуется большой стойкостью. В сухом и влажном воздухе он не окисляется заметно. С кислородом соединяется непосредственно (сгорает) лишь при очень высокой t° с образованием окиси хрома СгзОз. Хром, содержащий углерод, окисляется труднее. При нагревании (плавлении) с <5огатыми кислородом веществами (нитратами, хлоратами) или при очень продолжительном плавлении со щелочами в присутствии кислорода X. окисляется до шестивалентного с образованием хроматов. При нагревании соединяется также непосредственное галоидами, серой, азотом, углеродом, кремнием, бором и др. Разбавленная серная и соляная к-ты действуют на X. в зависимости от его степени активности и от t° б. или м. энергично, ио азотная к-та и царская водка на него не действуют вследствие сильного пассивирования (см.). Обработанный азотной к-той X. трудно реагирует поэтому с серной и соляной к-тами. В активном состоянии нормальный потенциал X. (двувалентного иона Сг") равен 0,56 V т. о. в ряду напряжений X. располагается между цинком и желе- зом и может вытеснять многие металлы (напр. мед1., олово, свинец) из растворов их солей.  [c.309]

При решении вопроса о допустимости контакта между металлами можно также руководствоваться следующими данными. Все металлы разделены на пять групп первая группа магний вторая — п,ипк, алюминий, кадмий третья — железо, углеродистые стали, свинец, олово четвертая — никель, хром, хромистые стали (Х17), хромопикелевые стали (Х18Н9) пятая — медноникелевые сплавы, медь, серебро.  [c.182]

На стоимость защитного покрытия значительное влияние оказывает технология его нанесения. На погружение детали в расплав металла требуется меньще затрат, чем на электроосаждение, которое, в свою очередь, требует меньше затрат, чем распыление и плакирование. Металлы, применяемые для покрытий, по стоимости можно условно разбить на три группы группа самой низкой стоимости — цинк, железо и свинец, промежуточная — никель, олово, кадмий и алюминий, группа дорогостоящих металлов — серебро, палладий, золото и родий [15].  [c.78]

Таким образом было изучено несколько жидких,металлов, свинец [31, с. 275 32—34], олово [31, с. 237 33 34] и натрий [31, с. 227 37], а также вода [27], Литературные данные все еще значительно различаются в отношении точного толкования (интерпретации) и значения результатов, но можно сделать несколько качественных заключений. Оказывается, что в жидкости, как и в твердом теле, существуют колебания атомов, обладающие большой энергией, а распределение частоты колебаний в обоих состояниях одинаково. Жидкость имеет размытый дебаевский спектр, который постепенно становится все менее четким при нагревании. Из этого следует, что температура Дебая при плавлении изменяется лишь незначительно, что подтверждается наблюдениями, показывающими пренебрежимо малое изменение теплоемкости при плавлении большинства металлов. Предполагается также, что диффузия в жидкостях не может быть представлена ни простой моделью свободной диффузии, подобной диффузии в газе (за исключением, возможно, при очень высоких температурах жидкости), ни механизмом скачкообразной диффузии, как в твердых телах такой вывод впервые сделал Нахтриб [209]. Был предложен вариант, основанный на групповой модели диффузии в жидких металлах [27, 36] подобная модель независимо была предложена мной [332]. Глобулы или группы, как полагают, содержат около 100 атомов (см. разделы 3 и 8) и позволяют качественно интерпретировать другие физические свойства (сМ. раздел 9). Вычисленные из модели Эгельштаффа константы диффузии прекрасно совпадают с экспериментальными [27].  [c.20]

Термические напряжения пропорциональны а//(. Величины этого отношения для ряда металлов приведены в табл. 2. Это отношение значительно больше для неко-торых металлов, таких, как свинец, олово, кадмий, щелочные металлы и металлы титановой группы, а также для многих сплавов. Термические деформации в таких материалах могут на порядок и больше превышать величину термических деформаций в золоте.  [c.323]

Восстановление никеля из его солей гипофосфитом самопроизвольно начинается лишь на металлах группы железа и на палладии, которые катализируют этот процесс. Для покрытия других, каталитически неактивных металлов, например, меди, латуни необходим контакт этих металлов в растворе с алюминием или с другими, более электроотрицательными, чем никель, металлами для этой цели можно также использовать активирование поверхности путем обработки ее в растворе хлористого палладия (0,1—0,5 г/л Р(1С12, рН 3) в течение 10—60 с. На некоторых металлах, таких как свинец, кадмий, олово, цинк, висмут, сурьма никелевое покрытие не образуется даже при применении методов контактирования и активирования их.  [c.291]


Свинец и олово — элементы IV группы Периодической системы. Электронная структура атотлов их во внешней оболочке одинакова— оба имеют по два - и р-электрона. Атом свинца крупнее и у него стремление отдать электроны сильнее выражено, чем у олова — он более металличен. В связи с этим устойчивее производные РЬ (II), в большинстве солеобразные, а соединения РЬ (IV)—сильные окислители. Напротив, четырехвалентное олово более стойко, а двухвалентное — энергичный восстановитель. В металлургии эти металлы объединяет легкоплавкость и малое сродство к кислороду, а также сходство способов получения и рафинирования, несмотря на различие в сырье.  [c.232]

ОТХОДЫ деклассированные цветных металлов и их сплавов неполноценные отходы (полноценные О. см. Лом металлический), получаемые от процессов механич. обработки и литья гл. обр. в цветной металлопромышленности. О. деклассированные делятся на две группы О. красных металлов (медь, латунь, томпак, бронза и т. д.) и белых металлов (свинец, алюминий, олово, цинк и пр.). Классификация О. деклассированных цветных металлов и применение их в промышленности чрезвычайно разнообразны. Так, медные отходы (мелкие землистые сора, формовочная земля, богатые хвосты, изгарина, окалина крупюле шлаки медные, выломки из плавильных не-  [c.229]

СВИНЕЦ, Pb, тяжелый металл, химич. элемент TV группы периодич. системы, аналог олова ат. в. 207,2, порядковый номер 82. Известны изотопы РЬ с ат. в. 206, 207, 208 (209 ) (подробнее см. Изотопы, Нериодический закон, Радиоактивность). Металлич. С. синевато-серого цве та, образует кристаллы правильной (кубич.) системы с сильным металлическим блеском на свежем разрезе он очень мягок (твердость по шкале Mo a 1,5, по Бринелю 4), легко режется ножом и пишет, оставляя серую черту тягуч, но мало прочен на разрыв предел проч-  [c.184]

Из металлов основных групп плотнейшими решетками обладают бериллий, магний, а- и Р- кальций, а- и Р-стронций (ПА группа), алюминий, а-таллий (IIIA группа) и свинец (IVA группа). Остальные металлы основных групп (щелочные, щелочноземельные и Р-таллий) имеют объемноцентрированную кубическую ячейку. Иными структурами обладают лишь галлий, индий и олово.  [c.401]


Смотреть страницы где упоминается термин Группа IVA. Металлы олово, свинец : [c.79]    [c.489]    [c.404]    [c.261]    [c.301]    [c.95]    [c.111]    [c.290]   
Смотреть главы в:

Поверхностные свойства твердых тел  -> Группа IVA. Металлы олово, свинец



ПОИСК



Олово

Свинец

Свинец и олово



© 2025 Mash-xxl.info Реклама на сайте