Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение волн в неоднородных средах Приближение геометрической оптики

Распространение волн в неоднородных средах. Приближение геометрической оптики  [c.247]

РАСПРОСТРАНЕНИЕ ВОЛН В СЛУЧАЙНО-НЕОДНОРОДНЫХ СРЕДАХ (ПРИБЛИЖЕНИЕ ГЕОМЕТРИЧЕСКОЙ ОПТИКИ)  [c.309]

Глава 10. Распространение волн в случайно-неоднородных средах (приближение геометрической оптики). ............  [c.338]


ДИФРАКЦИЯ воли — в первоначальном узком смысле — огибание волнами препятствий, в современном, более широком — любые отклонения при распространении волн от законов геометрической оптики. К Д. в. фактически относят все эффекты, возникающие при взаимодействии волн с объектом любых размеров, даже малых по сравнению с длиной падающей волны Я, когда сопоставление е лучевым приближением совершенно не показательно. При таком общем толковании Д. в. тесно переплетается с явлениями распространения и рассеяния волн в неоднородных средах.  [c.664]

Возможны две точки зрения на место геометрической оптики в системе современных оптических представлений. Согласно первой из них геометрическая оптика рассматривается как самостоятельный раздел оптики, основанный на определенной системе постулатов. К наиболее важным из них относятся законы прямолинейного распространения света, законы его отражения и преломления. В такой постановке геометрическая оптика является основой вычислительной оптики [11], на базе которой осуществляются расчеты разнообразных оптических элементов и систем. Согласно второй точки зрения основные выражения и соотношения аппарата геометрической оптики являются по своей сути приближенными решениями волновых уравнений, во многих случаях облегчающих их анализ. Исходя из целевой установки данной книги мы будем придерживаться второй точки зрения. При этом сосредоточимся на вопросах распространения света в неоднородной среде, показатель преломления которой плавно меняется в пространстве. Световое поле представляется в форме локально плоской волны. В приближении геометрической оптики амплитуда этой волны не зависит от частоты, а частота, которая считается большой величиной, входит только в фазовый множитель.  [c.35]

Геометрическая оптика особенно важна, когда точное решение невозможно найти в явном виде или оно чрезвычайно сложно. Даже для более простых задач часто легче найти поведение волнового фронта таким образом, чем выделять его из общего решения. Мы разовьем идеи геометрической оптики на примере волнового уравнения, а затем покажем, как их применять к волнам в неоднородной среде (для которых точные решения могут оказаться недоступными) и к анизотропным волнам (которые имеют сложный вид). В следующей главе с помощью идей геометрической оптики будет развита приближенная теория распространения ударных волн. Из-за нелинейности и многомерности такие задачи чрезвычайно трудно исследовать каким-либо другим способом.  [c.230]


В этом параграфе исследуется распространение поля в области, не содержащей диэлектрических или металлических тел неоднородность состоит в том, что диэлектрическая проницаемость плавно меняется в пространстве. Поле представляется в форме локально плоской волны. В приближении геометрической оптики амплитуда этой волны не зависит от частоты, а частота, которая считается большой величиной, входит только в фазовый множитель. Построение лучевой структуры поля само показывает, где это приближение не применимо в тени, где нет лучей геометрической оптики далее, в областях с большим градиентом поля, например там, где происходит скачок поля или его производных наконец, в точках, куда сходятся лучи и где схлопываются так называемые лучевые трубки. Из интегрального представления поля следует, что поле на луче зависит не только от полей на этом же луче, но и от полей в некоторой окрестности луча, размером ар. Условие применимости геометрической оптики состоит в том, чтобы показатель преломления п среды менялся медленно, причем и /г, и поле должны оставаться почти постоянными в области порядка ар. Далее рассматривается один конкретный случай структуры поля, при которой геометрическая оптика неприменима, хотя п меняется медленно — каустика. Затем кратко говорится о комплексной геометрической оптике и о векторной геометрической оптике.  [c.218]

Вопросы геометрической оптики собраны в первых двух главах курса, чтобы в дальнейшем можно было ссылаться на них при изложении интерференции, дифракции и других разделов физической оптики. Геометрическая оптика излагается не как математическая, а как физическая дисциплина — как приближенный предельный случай волновой оптики. Тем самым четко определяются границы ее применимости. С целью простоты в основу обоснования геометрической оптики положено скалярное волновое уравнение. Хотя в общем случае неоднородной среды оно и неверно, но даже в этом случае при рассмотрении предельного перехода к геометрической оптике оно приводит к правильным результатам. Конечно, на основе скалярного уравнения ничего нельзя сказать относительно вращения плоскости поляризации луча в неоднородной среде. Для этого надо было бы положить в основу векторные уравнения Максвелла. Но это, ничего не меняя в идейном отношении, потребовало бы довольно громоздких вычислений. Существенно, что скалярное волновое уравнение правильно передает основные закономерности распространения волн не только в однородных, но и в неоднородных средах. Геометрическая же оптика получается из него в предельном случае коротких волн, длины которых пренебрежимо малы по сравнению с характерными размерами, определяющими распространение света в среде.  [c.7]

Разновидности Г. о. м. используют при решении разнообразных физ. задач, причём не только в оптике, но и в радиофизике, физике плазмы. У Г. о. м. имеются двойники геометрическая акустика, геом. сейсмология, квазаклассическое приближение квантовой механики (в трёх измерениях) и т. д. Особенно велика роль Г. о. м. в задачах распространения волн в неоднородных средах, для к-рых аналитич. решения исходною волнового ур-ния известны только для небольшого числа частных случаев.  [c.441]

Лит. Горелик Г. С., Колебания и волны, 2 изд., М., 19 9 Бреховсквх Л, М., Волны в слоистых средах, 2 илд., М., 1973, гл, 6 Ч е р н о в Л. А., Волны в случайно-неоднородных средах, М., 1975, ч. 1. М. А. Исакович. ГЕОМЕТРИЧЕСКАЯ ОПТИКА раздел оптики, в к-ром изучаются законы распространения света в прозрачных средах и условия получения изображений на основании матем, модели физ. явлений, происходящих в оптич. системах, справедливой, когда длина волны света бесконечно мала. Положения Г. о, имеют значения первых приближений, согласующихся с наблюдаемыми явлениями, если эффекты, вызываемые волновой природой света, — интерференция, дифракция и поляризация — несущественны. Выводы Г, о. строятся дедуктивным методом на основании неск. простых законов, установленных опытным путём  [c.438]


Сравнение (10.164) с (10.160) показывает, что распространение световой волны в 5, где присутствует устранимое гравитационное поле, аналогично распространению световой волны в инерциальной системе при наличии неоднородной преломляющей среды. Единственное отлячне в том, что пространственная геометрия в системе отсчета Я, соответствующей 5, может быть неевклидовой. Согласно основному постулату ОТО, нет существенной разницы между устранимыми и неустранимыми гравитационными полями. Поэтому (10.164) — (10.166) можно рассматривать как общие выражения, описывающие распространение монохроматической волны в гравитационном поле. Во многих важных случаях и в подходящих системах координат величины А, , в областях Й, больших по сравнению с длиной волны, практически постоянны, и можно применять приближение геометрической оптики.  [c.284]

Метод геоыетрической оптики в той форме, в каков он был применен выше, включает в себя два различных разложения. Первое из них проводится по параметру т. е. фактически по отношению ЯДо, где Яо — внутренний масштаб турбулентности. В результате этого разложения было получено уравнение эйконала и уравнение, связывающее амплитуду и фазу волны. Для случая, когда рассматривается распространение волн в слоисто-неоднородной среде, уравнение эйконала может быть решено точно. В этом случае границы применимости метода геометрической оптики определяются следующими членами разложения по Однако в случае распространения волн в среде со случайными неоднородностями само уравнение эйконала решается приближенно, путем разложения по малому параметру 6i = е — <е>. В этом случае границы применимости метода будут ограничиваться также нелинейными эффектами, связанными с членами порядка е . Рассматривая вопрос о границах применимости всего метода в целом, следует сначала рассмотреть вторую часть задачи.  [c.268]

Предлагаемая внямаяию читателя книга посвящена систематическому изложению геометрической теории дифракции (ГТД) — новому эффективному методу анализа и расчета распространения, излучения и рассеяния волновых полей. Эта теория использовала и обобщила наглядную и привычную систему образов и понятий геометрической оптики. Ее область применения весьма ширО Ка техника антенн и трактов СВЧ, миллиметрового и ин-фракрасных диапазонов, лазерная техника, а также проблемы распространения и рассеяния воли в неоднородных средах и на телах сложной формы. Хотя ГТД строится как асимптотическая теория, применимая в тех случаях, когда характерный размер задачи а много больше длины волны К, опыт расчетов по ГТД показывает, что она дает надежные результаты вплоть до значений а порядка К. Таким образом, ее область применимости примыкает к области применимости другой предельной теории — длинноволнового приближения. Методы ГТД обобщают широко известные методы физической оптики (апертурный метод, приближение Кирхгофа) и естественно смыкаются с ними. Они обеспечивают точность, сравнимую и (для малых дли волн) превосходящую точность, достигаемую численными методами ( апример, методом интегральных уравнений).  [c.3]

При анализ распространения и рассеяния волн в случайно-неоднородных средах применяют и методы, основанные на переходе от исходных С. у. к более простым. Сюда относятся, в частности, геометрической оптики метод, параболического уравнения приближение, плавных воамуи ений метод, приблнженке случайного фазового экрана, переход к ур-вию не реноса иалутния,  [c.697]


Смотреть страницы где упоминается термин Распространение волн в неоднородных средах Приближение геометрической оптики : [c.266]    [c.563]    [c.8]    [c.671]   
Смотреть главы в:

Введение в теорию колебаний и волн  -> Распространение волн в неоднородных средах Приближение геометрической оптики



ПОИСК



Волны неоднородные

Волны распространение

Геометрическая оптика неоднородных волн

Геометрическое приближение

Неоднородность

Оптика геометрическая

Приближение геометрической оптик

Распространение волн в случайно-неоднородных средах (приближение геометрической оптики)

Среда неоднородная



© 2025 Mash-xxl.info Реклама на сайте