Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость распространения действия силы в упругом теле

Скорость распространения действия силы в упругом теле  [c.242]

СКОРОСТЬ РАСПРОСТРАНЕНИЯ ДЕЙСТВИЯ силы в УПРУГОМ ТЕЛЕ 243  [c.243]

При анализе динамического распространения трещины, когда нельзя пренебрегать силами инерции, необходимо рассматривать динамическую задачу теории упругости для тела с движущейся трещиной. Учет сил инерции приводит к перераспределению напряжений и деформаций в окрестности вершины трещины. Наиболее просто эти эффекты анализируются в следующих случаях, являющихся предельными случаями общего динамического роста трещины на тело действует ударная нагрузка и фронт трещины распространяется в упругом теле с большой скоростью, сравнимой со скоростью звука, причем упругое поле стационарно в малой окрестности вершины трещины в движущейся системе координат, связанной с концом трещины гармоническое упругое поле, когда край трещины неподвижен, внешние нагрузки, помимо постоянной составляющей, имеют компоненту, которая изменяется во времени с большой частотой. Гармонические задачи о трещинах можно разделить на два класса в нервом классе задач гармонические нагрузки прикладываются к берегам трещины, во втором — сингулярное ноле напряжений образуется вследствие дифракции волны, падающей на трещину.  [c.79]


Г. И. Баренблатт и Г. П. Черепанов (1961) рассмотрели задачу об изолированной прямолинейной трещине, простирающейся вдоль некоторой линии упругой симметрии в ортотропном бесконечном теле в условиях плоской деформации. В этой же работе рассмотрена задача расклинивания ортотропного тела с плоскостями симметрии, параллельными двум осям, абсолютно жестким бесконечным клином, движущимся с постоянной скоростью. Предполагается, что на поверхности соприкосновения клина с расклиниваемым телом действуют силы кулонова трения. Более детально исследуется вопрос о расклинивании ортотропного тела неподвижным клином постоянной толщины в пренебрежении силами трения. В работе Э. П. Фельдмана (1967) в рамках дислокационной теории тонких двойников и трещин исследован вопрос распространения тонкой равновесной трещины вдоль анизотропной полосы конечной толщины. При постепенном возрастании внешних нагрузок трещина растет до некоторого критического значения, после чего происходит мгновенное разрушение полосы.  [c.387]

В книге Ю. Н. Работнова [44] приведен метод, связанный с решением задач теории наследственной упругости, когда на тело достаточной протяженности действует нагрузка, движущаяся с постоянной скоростью и не меняющая своей конфигурации по отношению к системе координат, которая движется с той же скоростью. Полагалось, что скорость движения достаточно мала (по сравнению со скоростью распространения упругих волн), и поэтому силами инерции, происходящими от ускорений, пренебрегалось. Как конкретный пример применения предложенного метода рассмотрена задача о движущемся штампе по границе вязко-  [c.403]

В данной главе изложен алгоритм [95, 102] расчета статической траектории распространения исходной внутренней трещины, базирующийся на решении плоской задачи теории упругости для тел с криволинейными разрезами. Приложенная к телу нагрузка и форма исходной трещины удовлетворяют некоторым условиям симметрии, так что оба ее конца развиваются одинаково. В этом случае траектория может быть построена без учета зависимости скорости роста трещины от коэффициента интенсивности напряжений в ее вершине. Аналогично может быть рассмотрено распространение краевой или полубесконечной трещины при действии любой несимметричной нагрузки. Изучены случаи развития исходной прямолинейной или двух сдвинутых параллельных трещин в бесконечной плоскости при действии растягивающих усилий на бесконечности или растягивающих сосредоточенных сил. Задачи на каждом этапе сводятся к сингулярному интегральному уравнению для гладких контуров, численное решение которого находится методом механических квадратур.  [c.41]


В обычном широко распространенном представлении упругая и пластическая деформации тела, как результат относительного смещения отдельных составляющих элементов его объема, и возникающие в нем при этом благодаря действию внешних сил внутренние силы сопротивления, т. е. напряжения, могут рассматриваться без какого-либо особого влияния на них времени, т. е. независимо от времени действия нагрузки, от скорости ее приложения к телу.  [c.8]

Аналогично для упругих тел, ТЧ которых определяется в (10.230), законы сохранения (10.223) приводят к уравнениям движения (10.245) для произвольно малой части вещества, для которой, помимо гравитационной силы, следует учитывать еще упругую 4-силу Уравнения движения для упругих тел оказываются следствием уравнений гравитационного поля. Можно ожидать, что это будет справедливо и при наличии других сил. Как было подчеркнуто в начале 6.1, конечная скорость распространения любых взаимодействий приводит к необходимости рассмотрения промежуточного поля для описания взаимодействия двух разделенных тел. Возникающая при этом соответствующая 4-сила должна быть равна дивергенции тензора энергип — импульса промежуточного поля. С другой стороны, этот тензор вносит вклад в полный тензор Г, стоящий в правой части уравнения гравитацрюнного поля. Например, в случае электромагнитных сил, действующих на заряженное упругое тело, тензор Г должен быть суммой выражений (10.230) и (10.305). Тогда закон сохранения (10.223), вытекающий из (11.13), снова приведет к уравнению движения для малой части тела в форме выражения (10.245). Однако теперь, как видим, в правой части уравнения должна стоять сумма упругой силы/ 6V и электромагнитной силы /сбУ из (10.304).  [c.305]

В заключение остановимся на вопросе о форме волн и о том особом месте, которое среди всевозможных по форме волн занимают гармонические волны. Прежде всего, при рассмотрении картины распространения бегущей волны в стержне мы пришли к выводу, что если на конец стержня действует гармоническая внешняя сила, заставляющая конец стержня совершать гармоническое движение, то и волна, бегущая по стержню, является гармонической. Этот вывод являлся непосредственным следствием того, что всякие упругие импульсы, независимо от их формы, распространяются по стержню с одинаковой скоростью и не изменяя своей формы. Правда, это последнее утверждение справедливо только при известных условиях, которые были оговорены в ИЗ, но эти условия часто соблюдаются, как в стержнях, так и во многих других упругих телах и средах, как твердых, так и жидких или газо разных, Тогд , если источник, возбуждающий волны, со-  [c.718]

Из факта, устанавливаемого формулой (2.10.1), можно сделать и обратное заключение, а именно, если заставить конец стержня двигаться с постоянной скоростью, то позади фронта волны напряжения будут постоянными. Пусть, например, по концу стержня производится удар телом очень большой массы, движущейся со скоростью V. Тогда от конца пойдет фронт ударной волны со скоростью с, материальная скорость частиц за фронтом будет равна V по формуле (2.10.1) a — Evl . Нам осталось определить скорость распространения фронта волны с. Для этого выделим из рассматриваемого стержня участок длиной dx между сечениями i—1 и 2—2 (ряс. 2.10.2). Пусть в момент времени t фронт упругой волны проходит через сечение 1—1, в момент t + dt через сечение 2—2. Для этого нужно, чтобы dx = dt. Применим к выделенной части стержня второй закон Ньютона. В течение времени dt в сечении 1—1 действует сила oF, тогда как сечение 2—2 остается непапряженпым, следовательно, импульс силы равен oF dt. В начальный момент t вся выделенная часть была в покое, в момент t + dt вся она движется со скоростью V, следовательно, изменение количества движения есть  [c.71]

Пример продольного удара представлен на рис. 245, где груа С падает на заплечики стержня с высоты /г. Вследствие большой скорости приложения ударной нагрузки процесс деформирования стержня при этой нагрузке должен существенно отличаться от того, какой мы имеем при статическом ее приложении. В самом деле, известно, что упругая деформация распространяется в теле со скоростью, равной скорости распространения в нем звука. Скорость эта очень велика, тогда как скорость приложения статической нагрузки, а следовательно, и скорость возрастания деформаций стержня малы. Поэтому к моменту, когда статическая нагрузка достигнет своей окончательной величины, деформация успевает распространиться на всю длину стержня. При ударной нагрузке, если длина стержня не очень мала, за очень короткое время удара деформации распространяются лишь на некоторую часть длины стержня. Таким образом, действие ударной нагрузки концентрируется лишь на некотором участке длины стержня, вследствие чего деформации оказываются большими, чем при статической нагрузке. После окончания приложения ударной нагрузки эти деформации распространяются на следующий участок длины стержня, в то время как на первом участке они убывают до величин статических деформаций, и т. д. В результате мы получаем волновой харак тер распространения деформаций, а следовательно, и напряжений по длине стержня, причем волны деформаций и напряжений, достигнув защемленного конца, отражаются от него, создавая деформации и напряжения обратного знака. Эти явления еще осложняются тем, что при распространении деформации по длине стержня силы инерции масс частей стержня оказываются различными. Еще большие осложнения вносит пластическая деформация, если она происходит, так как скорость ее распространения, в отличие от упругой деформации, не постоянна, а изменяется с изменением соответствующего ей напряжения. Таким образом, напряженно-деформированное состояние стержня при ударном приложении нагрузки оказывается весьма сложным, причем продольный удар сопровождается всегда продоль-  [c.432]


Чтобы определить скорость распространения упругой волны с, воспользуемся известным законом динамики, согласно которому изменение количества движения тела равно действующему на него импульсу силы. Применим этот закон к бесконечно малому элементу стержня dx (рис. 18.10), ограниченному сечениями х и x dx. Пусть сечение X будет фронтом волны, в этом сечении -имеется напряжение о сечение же x+dx не рис. 18.10 напряжено. Таким образом, на элемент стержня dx с поперечным сечением F в течение элемента времени dt будет действовать импульс силы oFdt, при этом длина элемента dx связана с малым промежутком времени формулой dx= dt.  [c.547]

Теория упругости, развитая Пуассоном и Коши на базе принятой тогда гипотезы материальных точек, связанных действием центральных сил, была применена ими, а также Ламе (Lame) и Клапейроном ( lapeyron) к ряду проблем о колебаниях и об упругом равновесии таким образом была создана возможность экспериментальной проверки следствий из этой теории однако прошло немало времени, пока надлежащие эксперименты были поставлены. Пуассон применил теорию к изучению распространения волн в неограниченной упругой изотропной среде. Он нашел два типа волн, которые на большом расстоянии от источника возмущения можно считать соответственно продольными и поперечными из его теории вытекало, что отношение скоростей распространения этих двух типов волн равно 1 ). Коши применил свои уравнения к вопросу о распространении света как кристаллических, так и в изотропных телах. Эта теория в ее приложении к оптике вызвала возражения Грина (Green) с ее статической стороны она позже оспаривалась Стоксом Грин не был удовлетворен гипотезой, которая лежала в основе теории, и искал другого обоснований критика Стокса относилась скорее к процессу дедукции и. к некоторым частным результатам.  [c.24]

В теории упругости и, следовательно, в теории сейсмических волн важнейшими понятиями являются напряжение и деформация. Напряжением в какой-либо точке тела называется сила, действующая на единицу площади, тогда как деформацией называется результирующее смещение этой точки. Можно показать [555], что в идеальной упругой гомогенной и изотропной бесконечной среде могут существовать только два вида плоских волн, обозначаемых как Р (primus) и S (se undus) волны. Скорости их распространения даются выражениями  [c.371]


Смотреть страницы где упоминается термин Скорость распространения действия силы в упругом теле : [c.379]    [c.456]    [c.10]    [c.222]   
Смотреть главы в:

Теоретическая механика Часть 2  -> Скорость распространения действия силы в упругом теле



ПОИСК



От скорости сила

Сила распространение ее действия

Сила упругая

Сила упругости

Скорость распространения

Скорость упругой

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте