Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Подход с множителями Лагранжа

Подход с множителями Лагранжа  [c.222]

Условия закрепления Аг=0, являющиеся одновременно ограничениями, можно также учесть с помощью метода множителей Лагранжа. Обычно (см. разд. 3.2) это осуществляют путем непосредственного вычеркивания из матрицы жесткости столбцов, отвечающих этим условиям, и исключением из матрицы соответствующих строк. Однако в подходе, использующем множители Лагранжа, глобальную матрицу жесткости можно оставить без изменений.  [c.214]


В более общих случаях метод неопределенных множителей Лагранжа не позволяет получить решение задачи в замкнутой форме, так как относительно hju получается бесконечная система нелинейных алгебраических уравнений. Однако вариационная постановка задач статистической динамики позволяет развить эффективные приближенные методы расчета, необходимые для решения прикладных вопросов. Рассмотренные же здесь примеры иллюстрируют существо вариационного подхода и свидетельствуют о строгом совпадении результатов с известными точными распределениями.  [c.48]

С другой стороны, эти формулы представляют собой равновесные термодинамические уравнения состояния. С их помощью внутренняя энергия U = (Н) и среднее число частиц могут быть выражены через естественные термодинамические переменные Т, fi и V. С физической точки зрения интерпретация термодинамических величин как множителей Лагранжа может показаться несколько формальной. Мы увидим, однако, что это очень удобно в неравновесной статистической механике, поскольку подход, основанный на экстремальности информационной энтропии, дает возможность распространить термодинамические соотношения на неравновесные состояния.  [c.61]

Представляет интерес традиционный подход к (10.1) — через варьирование. В каждой точке объема имеем векторное ограничение. Вводя векторный же множитель Лагранжа Я, оперируем с 6т как свободно варьируемой в объеме величиной  [c.84]

Прежде всего, вариационные принципы позволяют предложить различные подходы к построению глобальных уравнений. При глобальном анализе конструкций роль вариационных принципов во многом заключается в том, что они позволяют с другой точки зрения взглянуть на алгебраические операции, обусловленные различными подходами. Специальным операциям глобального анализа можно также дать вариационную трактовку вариационный подход особенно важен при учете ограничений по методу множителей Лагранжа. Кроме того, на вариационных принципах основаны методы доказательства сходимости, а некоторые из этих принципов позволяют даже установить характер сходимости.  [c.205]

Следует заметить, что альтернативный подход к определению ограничений, восстанавливающих непрерывность, заключается в обеспечении непрерывности в дискретных точках границы. В приведенном выше примере имеется невязка для одной степени свободы в полях перемещений на границах элементов. Обозначая точку, лежащую на стороне 1—2, цифрой 7 (см. рис. 7.8), можно записать —ыf=0. Вычисляя затем в точке 7 соответствующие значения полей перемещения для элементов А н В, получим уравнения, задающие ограничения в виде, аналогичном соотношению (7.25). Если учесть указанное ограничение с помощью метода множителей Лагранжа, то в этом случае множитель Лагранжа представляет собой величину силы в рассматриваемой точке.  [c.217]


Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

С Другой стороны, принцип дополнительной виртуальной работы приводит к установлению принципа минимума дополнительной энергии в случае, когда соотношения напряжения — деформации таковы, что существует функция дополнительной энергии и предполагается, что при вариации напряжений граничные условия в перемещениях остаются неизменными. Принцип минимума дополнительной энергии с помощью введения множителей Лагранжа приводит к принципу Хеллингера — Рейсснера, принципу минимума потенциальной энергии и т. д. Показано, что в рамках теории малых деформаций упругого тела эти два подхода к формулированию вариационных принципов являются взаимными и эквивалентными друг другу.  [c.19]

Другой подход к решению вариационных задач газовой динамики был предложен Т. К Сиразетдиновым. Этот подход дает возможность решать задачи при произвольных ограничениях, накладываемых на на поверхность обтекаемого тела, и состоит в том, что дифференциальные уравнения в частных производных, описывающих течение, используются в качестве связей между функциями в области влияния. При составлении функционала Лагранжа для задачи на безусловный экстремум эти. уравнения учитываются при помощи переменных множителей Лагранжа. Необходимые условия экстремума для такой задачи в общем случае представляют собой краевую задачу для системы нелинейных дифференциальных уравнений в частных производных с условиями на замкнутой поверхности, ограничивающей область влияния. При сверхзвуковых скоростях эта система, включающая уравнения для множителей Лагранжа, имеет гиперболический тип.  [c.243]

К. Г. Гудерлей и Дж. В. Армитедж предложили ) новый подход к решению вариационных задач газовой динамики, свободный от перечисленных ограничений. Этот подход, идея которого была также независимо высказана Т. К. Сиразетдиновым (1963), состоит в том, что экстремальная задача формулируется для интеграла от давлений, записанного непосредственно по контуру тела, при наличии связей между искомыми функциями в области влияния.контура в виде дифференциальных уравнений, описывающих движение газа. При составлении минимизируемого функционала эти связи учитываются введением соответствующих переменных множителей Лагранжа, так что функционал состоит из суммы интеграла, взятого вдоль искомого контура, и двойного интеграла, взятого по области влияния контура. Необходимые условия экстремума дают краевую задачу для системы нелинейных дифференциальных уравнений в частных производных с условиями на границе области влияния.  [c.180]


Кроме процедуры, описанной а разд. 4,2, существуют и другие способы удовлетворения граничным условиям в методе конечных элементов. Например, а гл. 7 показано, что путем использования множителей Лагранжа а аарнационвую формулировку могут быть включены уравнения связи. Так как граничные условия можно рассматривать как уравяения связей, значение такого подхода очевидно. В методе множителей Лагра-нжа граничные условия вводятся непосредственно в матричное уравнение системы. Хотя достоинством этого метода является простота, его существенный недостаток состоит а том, что расширенное матричное уравнение системы должно решаться и для дополнительных неизвестных, т. е. множителей Лагранжа. С деталями этого метода, выходящими за рамки нашей книги, читатель может ознакомиться по работам 5—7].  [c.101]


Смотреть страницы где упоминается термин Подход с множителями Лагранжа : [c.421]    [c.44]    [c.365]    [c.398]    [c.247]    [c.118]   
Смотреть главы в:

Механика упругих тел  -> Подход с множителями Лагранжа



ПОИСК



Множитель

Множитель Лагранжа

Подход



© 2025 Mash-xxl.info Реклама на сайте