Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Молибден — Влияние на свойства

Молибден — Влияние на свойства и структуру чугуна 17—19  [c.240]

Эле.ментом, оказывающим благоприятное влияние на свойства цементуемых сталей, является молибден, который не склонен к внутреннему окислению н существенно.му карбидообразованию.  [c.153]

Карбидная неоднородность выражена сильнее в сталях с повышенным содержанием вольфрама, ванадия и кобальта. В сталях с молибденом размер карбидных частиц и их скоплений меньше, что оказывает положительное влияние на свойства последних.  [c.607]


Основным легирующим элементом в промышленных титановых сплавах является алюминий. Два следующих по значимости легирующих элемента — ванадий и молибден. Еще в качестве легирующих элементов используются по крайней мере семь металлов Сг, Мп, Fe, Си, Sn, Zr, W. Для микролегирования используют Nb, Та, Pd и др. Легирующие элементы оказывают различное влияние на свойства сплавов А1, Zr, Nb повышают жаропрочность до 550°С Мо, Zr, Nb, Та, Pd повышают коррозионную стойкость в кислотах.  [c.196]

Молибден — Влияние на свойства стали и чугуна 8—9 (табл. 3) Мост передний автомобилей ГАЗ-53 и ЗИЛ-130 — Материал основных деталей и их термическая обработка 71 (табл. 54)  [c.289]

Легированными называются стали, в которых, кроме углерода, существенное влияние на свойства оказывают хром, никель, ванадий, вольфрам, бор, молибден, кремний, марганец и другие элементы, содержащиеся в значительном количестве в стали.  [c.28]

Какое влияние на свойства стали оказывают легирующие элементы хром, никель, молибден  [c.53]

При легировании вольфрама стремятся повысить его прочность, жаропрочность, снизить хрупкость и улучшить технологичность. Разработаны однофазные сплавы вольфрама с ниобием (до 2% N5), с молибденом (до 15%Л1о), с рением (до 30% Ке), Особенно эффективное влияние на свойства вольфрама оказывает рений. Сплав с 27% Ке пластичен при комнатной температуре и обладает в лито.м состоянии ав = 1400 МПа и 6=15%. Однако возможности использования этих сплавов ограничены дефицитностью рения.  [c.241]

В качестве дополнительно легирующих элементов в большинстве случаев применяется молибден или вольфрам, или тот и другой элементы вместе взятые. Кроме того, положительное влияние на свойства жароупорных сталей и сплавов оказывает титаи, который образует весьма устойчивые мелкодисперсные карбиды, повышающие сопротивление ползучести.  [c.226]

Молибден, вводимый в КЧ для устранения "белого излома", оказывает такое же, как и медь, влияние на свойства чугуна.  [c.684]

Большое влияние на механические свойства молибдена оказывает содержание в нем кислорода, азота и углерода. Наиболее сильное влияние па повышение температуры перехода молибдена из хрупкого состояния в пластичное оказывает кислород, тысячные доли процента которого приводят к тому, что молибден становится хрупким при комнатной температуре.  [c.292]

В быстрорежущих сталях молибден подобно вольфраму повышает красностойкость стали. В конструкционных сталях небольшое содержание молибдена (0,1% Мо) значительно снижает чувствительность стали к отпускной хрупкости. Влияние молибдена на свойства стали аналогично влиянию вольфрама, но при одинаковых содержаниях в стали оно значительно сильнее, чем действие вольфрама.  [c.91]


Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]

Молибден оказывает на свойства циркония влияние, подобное вольфраму.  [c.483]

В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонность стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49].  [c.39]

Многочисленными исследованиями как отечественных, так и зарубежных ученых установлено, что наиболее эффективное влияние на жаропрочные свойства стали оказывает небольшая группа элементов, именно хром, молибден, ванадий и вольфрам, которые являются основными при легировании малоуглеродистых марок жаропрочной стали в меньшей степени исследованы и применяются ниобий, титан и бор.  [c.22]

Механические свойства монокристаллов изучались при температурах от минус 70° С до 1800° С. Результаты экспериментов представлены на рис. I. 29. Полученные данные свидетельствуют, что с повышением температуры испытания прочность монокристаллов непрерывно падает, особенно резко в области температуры до 100° С. Изменение предела прочности в зависимости от температуры испытания показывает, что монокристаллический молибден с содержанием кислорода и азота не более нескольких тысячных процентов имеет предел прочности не ниже 2,0 кГ/мм вплоть до 1800°С. Удлинение возрастает с повышением температуры, достигая максимума при 850—900° С. При более высоких температурах значение этой характеристики снижается. Величина относительного сужения растет до температуры 700° С, дальнейшее повышение температуры не оказывает влияния на изменение количественных значений сужения.  [c.96]

Эти результаты подтверждаются данными оже-анализа (рис. 4.9). Так, после механической обработки (рис. 4.9./), т. е. шлифовки мелкозернистой шкуркой, а тем более после отжига, на поверхности образца практически отсутствуют примеси (чувствительность анализа составляет около 0,1ат. %). Электроэрозионная резка вносит, кроме структурных нарушений (на что указывалось выше), существенное загрязнение поверхности материалами, участвующими в технологическом процессе резки (рис. 4.9.2). Так, например, молибден — материал режущей проволоки, железо — материал направляющих и т. д. Сравнение результатов лазерного масс-спектрального анализа и автоэмиссионных свойств позволило сделать вывод о том, что примеси оказывают наибольшее влияние на автоэлектронную эмиссию из графита при их концентрации более 2,5 X 10 %.  [c.183]

Отпуск оказывает значительное влияние на механические свойства легированной конструкционной стали повышает предел текучести, вязкость и пластичность при некотором снижении прочности. Интенсивность снижения прочности зависит от легирующих элементов. Кремний, кобальт, хром, молибден, вольфрам и ванадий задерживают снижение твердости и прочности.  [c.403]

Наиболее благоприятное влияние на жаропрочность и технологические свойства сталей и сплавов оказывает молибден. Хром также повышает жаропрочность и, кроме того, является основным элементом, обеспечивающим защиту сталей и сплавов от окисления.  [c.425]


Молибден оказывает положительное влияние на механические свойства сварных швов аустенитных сталей, повышая одновременно их прочность и пластичность. Однако при введении больших количеств молибдена через электродное покрытие (15—20%) пластические свойства металла шва резко снижаются (табл. 42) [5]. При легировании шва молибденом через проволоку снижение пластичности менее значительно.  [c.233]

Присадка ниобия к 5%-ным хромистым сталям не оказывает существенного влияния на ползучесть сталей в тех случаях, когда требуются более высокие жаропрочные свойства, рекомендуется совместное легирование ниобием и молибденом.  [c.69]

Высокие температуры (до 400°) не оказывают на двусернистый молибден заметного влияния, и его смазочные свойства сохраняются примерно до 525°. Двусернистый молибден успешно применяют в узлах с высоким удельным давлением (до 8600 кГ/сж ), большими усилиями трения и для смазки поверхностей, на которых возможен большой износ и задиры.  [c.28]

Авторами работ [77, 78] проведены фундаментальные и систематические исследования по влиянию раздельного и комплексного легирования алюминием, кремнием, медью, кобальтом, хромом, молибденом и ванадием на фазовый состав, его стабильность при деформации и механические свойства железомарганцевых сплавов.  [c.41]

Система Fe—Мп. По влиянию на механические свойства железомарганцевых сплавов легирующие добавки можно разделить на две группы к первой относится кобальт, который незначительно повышает прочностные свойства, и кремний, увеличивающий пределы прочности и текучести при сохранении высокой пластичности и ударной вязкости ко второй — хром, никель [142], молибден, вольфрам [1], понижающие прочностные свойства.  [c.104]

Легирование сплавов Г19 и Г20 вольфрамом, хромом и никелем приводит к увеличению характеристик пластичности и вязкости при значительном снижении предела текучести. Такой характер влияния указанных легирующих элементов авторы работы [1] связывают со стабилизацией v-фазы к фазовым превращениям при охлаждении и деформации. Установлено, что молибден оказывает более существенное влияние на механические свойства, чем никель менее других изменяет механические свойства хром.  [c.106]

Наиболее высокую длительную прочность имеют хромоникелевые стали типа 18-8, легированные молибденом, молибденом и ниобием. Режим термической обработки оказывает большое влияние на свойства сталей этой груииы.  [c.146]

Дополнительное легирование молибденом сталей типа 30ХН4ЮА практически не оказывает влияния на свойства слоя в исследованном интервале температур, азотирования 540—700° С. Введение 0,3% Мо целесообразно, так как повышает пластичность и ударную вязкость стали. Рекомендуется сталь 30ХН4Ю4МА.  [c.193]

Легирующие элементы, такие как молибден, ванадий, хром, вольфрам, никель, титан и др., оказывают большое влияние на свойства гталей и чугунов. Стали с перечисленными компонентами, прошедшие гпециальную термическую обработку, очень широко применяют в паро-турбостроении.  [c.6]

Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

При необходимости снятия напряжений в аппарате из аустенитной стали, содержащей молибден, сваренном стабилизированным электродом, нужно назначить отжиг при температуре выше температуры рекристаллизации с медленным охлаждением в печи режим такого отжига приведен на стр. 672. Следует также отметить, что при термической обработке сварных изделий из коррозионно-стойкой стали значительное влияние на свойства изделия могут оказывать колебания в химическом составе основного металла и металла шва даже в пределах нормы. В связи с этим иногда приходится назначать режим термической обработки, учитывая результаты, полученные при испытании термообработаиных образцов — свидетелей или пробных образцов.  [c.666]

В конце XIX века было открыто влияние на свойства стали присадок молибдена придание ей высокой прочности и способности самозакаливаться. Начало широкого развития производства молибденовых сталей относится к 1910 г., когда были обнаружены особые свойства орудийных сталей, содержащих молибден. В дальнейшем молибден стал важнейшим легирующим элементом в сталях различного типа.  [c.94]

Дополнительное легирование никелем (1,4—1,8 %) повышает прокаливаемость и прочность хромомарганцевых сталей. Так, механические и технологические свойства менее легированных хромомарганцевых сталей 18ХГН и 15ХГНТ приближаются к хромоникелег вым сталям. Благоприятное влияние на свойства цементуемых сталей оказывает также молибден (0,2—  [c.217]

Растворение металлических элементов замещения в молибдене или других металлах в общем случае ухудшает пластичность и повышает порог хладноломкости. Небольшие добавки элементов замещения, играя роль рас-кислителей, могут снижать температуры перехода из пластичного состояния в хрупкое. Такими элементами являются, в частности, алюминий, церий, титан, цирконий, добавка которых в количестве 0,1—0,5% снижает температурный порог хрупкости. Значительное легирование примесями замещения всегда повышает порог хладноломкости. Исключение составляет рений (так называемый срениевый эффект ), который снижает порог хладноломкости молибдена, вольфрама и хрома (рис. 392). Чтобы получить ощутимое положительное влияние рения на свойства металла VI группы, необходимо вводить этот элемент в больших количествах (30—50%).  [c.532]


Таким образом, результаты проведенных исследований позволяют сделать вывод о том, что легирование термореагирующего никель-алюминиевого порошка кобальтом, хромом, молибденом, вольфрамом оказывает положительное влияние на кинетику взаимодействия никеля и алюминия в его частицах, состав и свойства напыленного покрытия.  [c.113]

Формирование всех свойств титановых сплавов определяется главным образом фазовым составом и структурой. Например, молибден, ванадий, ниобий, тантал, называемые изоморфными 3-сга6илизаторами, с0-фаэой титана образуют непрерывный ряд твердых растворов и во всем интервале концентраций фазовый состав сплавов (в отожженном состоянии) может быть представлен лишь двумя фазами <а и (3). Подавляющее большинство других элементов (а- и (3-стабилизаторов) образуют с титаном интерметаллические соединения (как правило, бертоллидного типа). При этом даже в области твердых растворов всегда могут быть созданы условия, при которых возможно образование предвыделений этих соединений, трудно выявляемых методами структурного анализа, но оказывающих исключительно сильное влияние на физические, электрохимические и механические свойства сплавов.  [c.12]

Сакерина С. М. Влияние частичной замены вол1 рама молибденом на свойства быстрорежущей стали. Сб. докладов и сообщений, на семинаре Новые инструментальные стали и внедрение их в промышленность. Под ред. Б. Цейтлина. Мин-во станкостроительной и инструментальной промышленности. ВНИИ,  [c.219]

Значительное влияние на структуру и свойства чугуна оказывает термическая обработка. При помощи нормализации и отжига можно превращать перлитные чу-гуны в ферритные и наоборот. Путем закалки можно придавать металлической основе чугуна мартенситную, бейнитную, бейнито-ферритную структуру. То же может быть достигнуто без закалки легированием чугуна. За рубежом широко распространен чугун с игольчатой структурой (a i ular iron), легированный молибденом и другими элементами.  [c.10]

Легирующие элементы — хром, никель, молибден, вольфрам, медь и титан — оказывают влияние на литейные свойства, резко повышают механические качества и дают возможность получения отливок из конструкционной мало- и среднелегн-рованной стали с кислотостойкими, жаропрочными, антикоррозионными и прочими свойствами.  [c.114]

Влияние легирующих элементов на структуру и свойства стали. По влиянию на устойчивость аустенита все легирующие элементы делятся на две группы расширяющие область существования аустенита и сужающие ее (соответственно, расширяющие область существования феррита). К цервой группе относятся никель, марганец, кобальт и др. Ко второй — хром, кремний, аллюминий, молибден, титан, ванадий, вольфрам и др. Элементы первой группы понижают критические точки A3 и А , второй — повышают. Соответственно, изменяются темпера-  [c.153]

Влияние азота на свойства и фазовый состав хромоникельмо-либденовой стали типа Г6-25-6 (ЭИ395) изучалось В. И. Просвириным с сотрудниками [276]. Установлено, что азот в закаленной на аустенит стали находится с -твердом растворе, а после старения выделяется в виде вторичных у - и о(-фаз. Последняя представляет собой карбонитридную фазу с гранецентрированной решеткой и меняющимися параметрами решетки в зависимости от термической обработки. Фаза % может содержать хром, молибден, никель, железо и углерод и сун ествует при 700—1000° С только в присутствии азота [277].  [c.327]

На втором этапе были изготовлены и использованы различные сплавы-катализаторы, остальные условия получения поликристаллов были прежними. Исследования проводили на фракции АРК4 400/315. Несмотря на то, что наиболее часто применяемым для синтеза является сплав хрома с никелем с содержанием хрома 20 % (масс.) (Х20Н80), обоснования для выбора данного состава в литературе не представлено. Поэтому были приготовлены сплавы-катализаторы с различным содержанием хрома и углерода. Затем базовый сплав Х20Н80 легировали молибденом, титаном и танталом с целью установления зависимости по влиянию различных свойств сплава—катализатора на процесс синтеза и свойства поликристаллического алмаза.  [c.432]

Удалось установить [74] определенную связь между составом пленки и ее защитными свойствами. Указанные выше стали подвергали коррозионным испытаниям в 10%-ном растворе РеВгд при 25° С в течение 150 час. Соответствующие данные о составе пассивных пленок после испытаний и скорости коррозии приведены на рис. 25. Можно отметить интересные изменения в составе иленки примерно 25% Si в пассивной пленке в процессе коррозионных испытаний заменяются Мо. В результате создается поверхность, обладающая высокими защитными свойствами. Наибольшее повышение содержания кремния в нленке и наибольшая скорость обогащения пленок молибденом в процессе коррозии наблюдаются у сплавов, содержащих 1—2% Si, и это количество кремния будет самым эффективным. Дальнейшее повышение содержания Si оказывает значительно меньшее влияние на улучшение коррозионной стойкости сплава, что подтверждается коррозионными данными. Состав пленки для сплава с 2% Si после  [c.40]

Наибольший рредел прочности при изгибе и оптимальные режу щие свойства наблюдаются у быстрорежущих сталей марки, R8 (6—8—2—5). В быстрорежущих сталях, легированных W — Мо— V —Со, распределение карбидов более равномерное, чем в ста. 1яХ, содержащих W V — Со. Недостатком сталей, содержащих молибден, является то, что они имеют склонность к обезуглероживанию. Твердость, предел прочности и работа разрушения при изгибе быстрорежущей стали марки R8 в зависимости от температуры закалки изменяются в соответствии с данными, приведенными в табл. 96. Вязкость стали R8, намного меньше, чем быстрорежущей стали марки R6, не содержащей кобальт (см. табл. 93). Влияние количества отпусков на свойства быстрорежущей стали марки R8 можно ви--деть из табл. 97. Увеличение количества отпусков целесообразно главным образом в том случае, если они непродолжительны по времени.  [c.232]

Как показано в большом количестве работ (см. гл. I, II), таким элементом является молибден, введение которого в сталь в количестве 0,3—0,6 % значительно тормозит развитие отпускной хрупкости. Аналогичное действие оказывает и вольфрам в хромоникелевых и хромомарганцовистых сталях, но оптимальное содержание этого дефицитного элемента еще больше, чем у молибдена, и составляет 1,1-1,6 %, а развитие хрупкости тормозится не столь эффективно как молибденом. Как считают Хондрос и Си [32], маловероятно, что для сплавов на основе железа можно найти другие добавки, снижающие подвижность фосфора, олова и сурьмы и не оказывающие вредного влияния на другие свойства сплавов.  [c.193]


Смотреть страницы где упоминается термин Молибден — Влияние на свойства : [c.545]    [c.297]    [c.91]    [c.67]    [c.311]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.0 ]

Автомобильные материалы (1971) -- [ c.0 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



141 — Влияние на свойства

Молибден

Молибдена Свойства

Молибденит



© 2025 Mash-xxl.info Реклама на сайте