Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структура и свойства композиционных покрытий

СТРУКТУРА И СВОЙСТВА КОМПОЗИЦИОННЫХ ПОКРЫТИЙ  [c.141]

Всесторонний анализ структуры и свойств материалов с покрытиями поможет реализовать на практике комбинированное упрочнение, при котором покрытие обеспечивает," например, повышенную износостойкость, жаростойкость, а объемно упрочненный основной металл обладает достаточным запасом трещиностойкости. При этом успешно используются все главные дислокационные механизмы управления структурой создание субзерен, полигонов ячеек и зеренных микроструктурных барьеров — для упрочнения объема выделение дисперсных фаз, введение растворенных атомов замещения и внедрения и увеличение плотности дислокаций — для формирования специальных свойств поверхности. Полученное таким образом композиционное изделие будет удовлетворять требованию гармоничного сочетания надежности долговечности прочности,  [c.193]


Естественно, что стимуляторы воздействуют на структуру и свойства матрицы. Например, в присутствии три-лона Б твердость чистых покрытий увеличивается с 0,9 до 2,5 ГПа, а таких композиционных покрытий, как Си— АЬОз, содержащих 5—6% (масс.) включений АЬОз, до  [c.61]

В случае спекания порошковых смесей или композиционных порошков гетерогенная структура покрытия формируется вследствие полного или частичного сохранения исходной структуры порошковых частиц. Такие покрытия получают газотермическим напылением, электро-контактной приваркой, а также гальваническим осаждением материалов. Возможности конструирования этих покрытий с различным сочетанием упрочняющих и матричных фаз значительное шире, чем у слоев, получаемых кристаллизацией из расплава. Создание композиционного покрытия базируется на основе сочетания в объеме покрытия материалов различных классов, обладающих различными исходными свойствами (металл, керамика, полимер). Природа исходных компонентов, их фазовое состояние и соотношение, состояние границы раздела фаз и создание заданной микро- и макроструктуры определяют свойства композиционного покрытия.  [c.146]

Активно внедряется в восстановительное производство нанесение гальванических композиционных хромовых, никелевых и железных покрытий. Возможно получение композиционных слоев из многих известных электролитов в присутствии мелкодисперсных порошков полимеров, карбидов, оксидов, боридов и др. При максимальной концентрации порошков в электролитах можно получить до 30...40 % гетерогенности покрытий, что положительно сказывается на их физико-механических и эксплуатационных свойствах. Технология электроосаждения позволяет получать композиционные покрытия толщиной > 100 мкм с возможным регулированием их структуры и свойств.  [c.429]

Полимерное материаловедение, развивающееся на базе фундаментальных наук о полимерных композициях — химии, физике, физической химии и механике, выделилось в настоящее время в самостоятельный раздел общего материаловедения. Значительно увеличилась роль полимерных материалов различных типов конструкционных пластиков, резин, защитных покрытий, волокон, пленок, клеев, компаундов, герметиков и др. в современной технике, технологии и в быту. Полимерное материаловедение вносит существенный вклад в развитие новых принципов создания материалов, в первую очередь композиционных, с направленным регулированием их структуры и свойств.  [c.10]

В книге изложены основные методы получения изоцианатов и уретанов для производства полиуретанов. Рассмотрена связь между структурой и свойствами полиуретанов. Большое внимание уделено композиционным материалам на их основе— эластичным и жестким пенополиуретанам, наполненным полиуретанам, эластомерам. Указаны области применения полиуретанов в качестве связующих, высокомодульных материалов, для получения однокомпонентных и интегральных пен, покрытий и др.  [c.216]


Для сопоставления структуры и свойств различных веществ и обсуждения механизма образования композиционных материалов и покрытий целесообразно пользоваться ориентировочными размерами атомов и ионов простых веществ, которые приведены на рис. 2.3.  [c.33]

Таким образом, следует считать, что шероховатость является необходимым, но недостаточным условием получения высокой адгезии металлического покрытия к пластмассе. Надо учитывать влияние на адгезию следующих факторов прочности самой пластмассы, так как разрушение обычно происходит в поверхностно.м слое пластмассы наличия благоприятных функциональных групп на поверхности присутствия различных промоторов адгезии неорганических, например соединений хрома, и органических, таких, как полярные низкомолекулярные соединения. Кроме того, на адгезию со временем могут оказать отрицательное влияние некоторые вещества, которые, диффундируя к промежуточному слою из глубины пластмассы, разрушают или ослабляют его (например, оксиды азота, если пластмассу травили в азотной кислоте). Существенное влияние имеют природа и условия осаждения металлического покрытия. Благородные металлы (Аи, Ад) образуют слабо связанные с пластмассой покрытия. Медь и пикель при больших скоростях осаждения дают прочные сцепления, а при малых — слабо связанные осадки. В итоге можно сказать, что адгезионные и другие физико-механические свойства металлизированных пластмасс как композиционного материала зависят от структуры и свойств промежуточного слоя, который играет роль связки. Рен-  [c.18]

Сформулированы основные принципы создания композиционного материала с покрытиями Ме—Сг—А1, отличающегося физико-химической устойчивостью в условиях работы судовых газотурбинных двигателей в течение планируемого срока службы. На примере электронно-лучевого покрытия Со—Сг—AI—У показана взаимосвязь между физическими свойствами конденсатов, их структурой и интенсивностью коррозионной повреждаемости.  [c.244]

Нам не представляется возможным автоматически переносить результаты взаимодействия металлов с углеграфитовыми материалами на углеродные волокна из-за специфичности структуры последних мелкие кристаллиты, в которых базисные плоскости вдоль границы волокна разделены узкими порами (параллельно оси волокна) и границами наклона, или кручения (перпендикулярно ей). При указанной структуре прочность волокна должна определяться прочностью границ кристаллитов и быть чувствительной к любым изменениям их состояния. Наличие металла на поверхности углеродного волокна может влиять на состояние и свойства волокон, так как при этом возможно протекание таких процессов, как химическое взаимодействие, диффузия, частичное и, в предельном случае, полное растворение волокна. Таким образом, изучение влияния покрытия на свойства углеродного волокна необходимо для того, чтобы знать, насколько покрытие может ухудшать характеристики как армирующего компонента, так и композиционного материала в целом.  [c.129]

Из сказанного выше следует, что электролиты-суспензии не устойчивы во времени и не постоянны по свойствам кроме того, низкий pH приводит к невысокому содержанию твердых включений. Оценить преимущества различных видов композиционных покрытий, описанных в работе [126], не представляется возможным вследствие отсутствия ряда сравнительных характеристик, в частности, относительно свойств покрытий никелем. С нашей точки зрения, необоснованно заключение автора об эффективной роли кубической и гексагональной кристаллических структур дисперсных веществ в определении состава и свойств КЭП.  [c.174]

Металлизированные пластмассы — это типичные слоистые композиционные материалы, свойства которых зависят от свойств несущей конструкции (исходной пластмассы), способа и режима ее переработки в изделие, от свойств промежуточного слоя, т. е. подготовки поверхности перед металлизацией и способа металлизации, и от свойств металлического покрытия (его толщины, состава и структуры).  [c.10]

Эта сложность требований, предъявляемых к современным материалам, вообще делает невозможной использование традиционных металлических сплавов, совершенствование которых неспособно обеспечить принципиальное и резкое повышение эксплуатационных характеристик при высоких и низких температурах, в условиях сильных ударных, знакопеременных нагрузок, тепловых ударов, действия облучения, высоких скоростей. Отсюда основным направлением современного материаловедения является создание композиционных, сложных материалов, компоненты которых вносят в них те или иные требуемые свойства. Типичным примером являются композиционные жаропрочные сплавы, состоящие из достаточно пластичной основы (матрицы), упрочненной непластичными тугоплавкими составляющими в форме волокон, нитевидных кристаллов, тонких включений либо поверхностно упрочненной покрытиями. Практическое создание таких сложных материалов обычно невозможно традиционными методами сплавления с последую-, щим литьем и механической обработкой, так как входящие в их состав компоненты плохо совместимы, имеют не только разные температуры плавления, но и вообще различную природу. Это вызывает необходимость использования методов порошковой металлургии, заключающейся в смешении разнородных и разнотипных материалов в форме порошков, прессовании из смесей заготовок нужных форм и спекания этих заготовок для их упрочнения и формирования требуемой структуры.  [c.77]


В работах [3, 6] рассмотрены возможности и перспективы применения композиционных материалов при пайке. Композиционная структура в шве может быть получена за счет применения композиционного припоя, при диспергировании паяемых материалов или в процессе диффузионной пайки. Наполнитель в большинстве случаев обеспечивает основные физико-механические, в частности, прочностные свойства. Матрица может вводиться в припой в виде порошков или покрытий, которые наносятся на паяемые поверхности. По способу введения в зазор композиционные припои подразделяются на четыре основных вида применяемые в виде многослойных покрытий используемые в виде фасонных или простых профилей (фолы, лент, втулок и т. д.), получаемых методами порошковой или волокнистой металлургии в сочетании с обработкой давлением (прокатка, штамповка после пропитки матрицей порошков или волокон) методами нанесения покрытий на профили и т. д. применяемые в виде смеси порошков или паст, которые обычно вводят в зазор непосредственно перед пайкой комбинированные способы — сочетания приведенных выше видов.  [c.55]

Первый способ включает в себя пайку припоями, обеспечивающими возможность получения в шве структуры твердых растворов, оптимальной при работе изделий в условиях воздействия агрессивных сред, циклических нагрузок и сверхнизких температур. В этом случае композиционные припои используются в виде многослойных фольг, покрытий, послойного нанесения порошков, сеток в сочетании с ленточным или порошковым припоями. Для снижения температуры пайки компоненты слоев подбирают таким образом, чтобы в процессе контактного плавления происходило образование жидкой фазы, обеспечивающей смачивание и растворение паяемых материалов, покрытий, буферных прослоек и легирование шва, что придает соединению высокие механические и коррозионные свойства. Так, для получения прочных паяных соединении из титановых сплавов применяют покрытия систем Си—Zr (0в 540- -640 МПа), сложные покрытия Си - (Со—Ni)-Си (0в Я  [c.56]

В основе современной лакокрасочной технологии лежит композиционно-структурный принцип, заключающийся в том, что, совмещая несколько ( ) компонентов, получают лакокрасочный материал (отдельно или уже на подложке), из которого затем формируется адгезионная пленка (покрытие) определенного состава / (обычно / 0 и структуры в свою очередь, состав и структура покрытия влияют на его свойства, т. е. определяют решение технической задачи, для которой предназначено покрытие.  [c.7]

Ошибочно причислять к КМ гомогенные сплавы со взаимной растворимостью металлов (например, N1—Си) и плакированные металлы [19] или любые слоистые (сэндвич) и сотовые структуры, как и многослойные покрытия или изделия с покрытием, поскольку отдельные компоненты таких систем во многих случаях проявляют только свои индивидуальные свойства, несмотря на то что между ними существует межфазная граница. Сотовые и слоистые системы [24] следует рассматривать скорее как композиционные конструкции, а не материалы. Слоистые системы можно условно причислить к композиционным материалам в тех случаях, когда при эксплуатации и наличии диффузии или при малых толщинах пластин одна из них может образовать непрерывную фазу во всем объеме материала. Наличие границы между непрерывной I фазой (матрицей) и дисперсной фазой (включениями), по нашему мнению — основная характеристика композиционных материалов.  [c.9]

В настоящем разделе представлены лишь некоторые возможности использования современных методов исследования состава и структуры композиционных материалов и покрытий. При описании процессов образования КМ и их свойств ниже будет дана дополнительная информация по этому вопросу. Методы исследования многообразны, так же, как и многочисленны пути образования природных и искусственных гетерофазных материалов.  [c.75]

Изложены основы получения конденсированных в вакууме композиционных фольг (пленок) материалов в виде металлов и сплавов с высокими механическими сЬойствами. Рассмотрены структура, механические свойства, особенности деформации и разрушения металлических фолы. Описана методика исследования комплекса механических свойств объектов толщиной 1—100 мкм. Показана возможность применения высокопрочных пленочных материалов в качестве защитных покрытий для повышения износостойкости и усталостной прочности металлических изделий.  [c.52]

Особенностью армированных (или в общем случае композиционных) теплозащитных материалов является наличие по крайней мере двух фронтов уноса массы поверхностного, задающего линейный размер (толщину) теплозащитного покрытия, и внутреннего, определяющего глубину слоя с измененной структурой. При заданных внешних условиях нагрева при определении работоспособности теплозащитного покрытия в целом на первый план выходят либо требования к точности определения характеристик поверхностного разрушения, либо необходимость точного расчета глубины прогрева. Для определения глубины прогрева, помимо теплофизических свойств, важно знать величину скорости перемещения внешней поверхности и ее температуру Т - Напротив, при ква-зистационарном разрушении нет необходимости детально исследовать внутренние процессы достаточно знать суммарное количество тепла, поглощенное материалом, прежде чем он нагреется до температуры разрушения. Однако время установления квазистационарного разрушения Тщ и, следовательно, общая толщина унесенного слоя материала существенно зависят от его теплофизических свойств, в частности коэффициента теплопроводности.  [c.88]

Объемно-легированные порошки имеют гетерогенную структуру с равномерным по сечению распределением легируюш,их элементов. Диффузионно-легированные самофлюсуюш,иеся порошки являются, по сути, композиционными и состоят из металлического ядра и диффузионного боросилицидного слоя, в котором сконцентрированы флюсующе-раскисляющие элементы (рис. 3.7). Повышенная концентрация флюсую-ще-раскисляющих элементов в поверхностном слое частиц порошка способствует более эффективному раскислению зоны наплавки. Получаемые покрытия имеют гетерогенную структуру (рис. 3.8) и высокие триботехнические свойства.  [c.203]


Композиционный гибкий шнуровой материал Сфекорд-экзо № 40 готовят на основе никелевого самофлюсующегося сплава, никель-алюминиевого композита и специального твердого сплава. Он предназначен для напыления покрытий без оплавления. Разогрев основного металла детали также не превышает 523 К. Материал обеспечивает получение твердого и плотного покрытия. Формируемая в процессе напыления неоднородная структура покрытия придает упрочненным изделиям повышенные антифрикционные свойства и износостойкость при трении металла о металл. Абразивная износостойкость удовлетворительная, но ударные воздействия на покрытие не допускаются. При обработке покрытия шлифовальным кругом достигается высокое качество рабочей поверхности. При этом полученный слой обладает эффектом самосмазы-вания за счет контролируемой микропористости.  [c.225]

КЭП отличаются по свойствам от чистых покрытий не только вследствие своей композиционности , но также и за счет изменения структуры матрицы. В работе [166] отмечается образование крупных (до 5—15 мкм) зерен матрицы в покрытии Со—С или Со—Са 2, в то время как в слое кобальта зерна не выявлялись даже при Х2000.  [c.147]


Смотреть страницы где упоминается термин Структура и свойства композиционных покрытий : [c.65]    [c.223]    [c.23]    [c.306]    [c.244]   
Смотреть главы в:

Неорганические композиционные материалы  -> Структура и свойства композиционных покрытий



ПОИСК



Композиционные покрытия

Композиционные покрытия и свойства

Покрытия свойства

Свойства с а-структурой

Структура покрытия



© 2025 Mash-xxl.info Реклама на сайте