Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлические матричные материалы

МЕТАЛЛИЧЕСКИЕ МАТРИЧНЫЕ МАТЕРИАЛЫ  [c.82]

Металлические матричные материалы  [c.83]

I. Методы сварки и пайки предполагают соединение композиционных материалов по металлической матрице. Армирующий наполнитель в сварном или паяном шве или полностью отсутствует (например, в стыковых швах, расположенных поперек направления армирования в волокнистых или слоистых композиционных материалах), или присутствует в уменьшенной объемной доле (при сварке дисперсно-упрочненных материалов проволоками, содержащими дискретную армирующую фазу), или происходит нарушение непрерывности и направленности армирования (например, при диффузионной сварке волокнистых композиций поперек направления армирования). Следовательно, сварной или паяный шов является ослабленным участком конструкции из композиционного материала, что требует учета при конструировании и подготовке места соединения под сварку. В литературе имеются предложения по автономной сварке компонентов композиции для сохранения непрерывности армирования (например, сварка давлением вольфрамовых волокон в композиции вольфрам — медь [10]), однако автономная сварка ВСТЫК волокнистых композиционных материалов требует специальной подготовки кромок, строгого соблюдения шага армирования и пригодна лишь для материалов, армированных металлическими волокнами. Другое предложение состоит в подготовке СТЫКОВЫХ соединений с перекрытием волокон на длине больше критической, однако при этом возникают трудности С заполнением стыка матричным материалом и обеспечением прочной связи по границе волокно—матрица.  [c.500]


Из всего многообразия применяемых в данное время композиционных материалов системы металл—металл или металл—неорганическое вещество в зависимости от формы поверхности раздела могут быть выделены две основные группы I — материалы матричного типа, состоящие из различным образом расположенных упрочняющих частиц или армирующих элементов, соединенных связующим веществом, и II — материалы слоистого типа, к которым следует отнести биметаллы, а также различного рода многослойные металлические материалы (рис. 114). Предлагаемая схема охватывает лишь некоторые основные типы композиционных материалов. Необходимо отметить, что для создания рациональных композиций материалов как первой, так и второй групп очень важно изучить процессы взаимодействия компонентов. Эта взаимодействие может быть как физико-меха-ническим (возникающим в процессе совместного деформирования), так и химическим (образующимся в результате протекания диффузионных процессов). Следует различать первичное взаимодействие между компонентами, развивающееся на поверхностях раздела при изготовлении материала, и вторичное взаимодействие составляющих, возникающее в условиях службы материала при различных режимах теплового и механического нагружения.  [c.199]

Электролитические методы позволяют получать композиционные материалы в результате осаждения матричного материала на нитевидные кристаллы и волокна, которые непрерывно находятся в контакте с катодом. Процесс протекает при низкой температуре и в отсутствие давления, что практически полностью исключает разрушение волокон и вредное влияние температурного фактора. Покрытие получается плотным, беспористым в том случае, если оно равномерно покрывает поверхность волокон и пространство между ними. Пористость наблюдается при использовании волокон бора, карбида бора или металлических волокон диаметром более 100 мкм.  [c.274]

Сварка взрывом применяется для соединения листов, профилей и труб из КМ, армированных металлическими волокнами или слоями, имеющими достаточно высокие пластические свойства, чтобы избежать дробления армирующей фазы, а также для соединения КМ с законцовками из различных металлов и сплавов. Прочность соединений обычно равна или даже выше (за счет деформационного упрочнения) прочности наименее прочного матричного материала, применяемого в соединяемых деталях. Для повышения прочности соединений используют промежуточные прокладки из других материалов. В соединениях обычно нет пор или трещин. Возможно присутствие в переходной зоне оплавленных участков, особенно при сварке взрывом разнородных металлов.  [c.173]


Композиты с металлической матрицей упрочняются высокопрочными волокнами или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле. В качестве матричных составляющих чаще всего используют А1, Т1, М , N1 и сплавы на их основе. Для упрочнения применяют углеродные, стальные и борные волокна, волокна оксидов (Л Оз, гЮг и др.), боридов, карбидов, жаропрочных металлов (Мо, W, Ве, Та и др.) и др. В композитах с металлической матрицей сочетаются достоинства конструкционных металлических материалов с достоинствами композитов вообще. Для них характерны высокие значения прочно-  [c.421]

Пористую оболочку можно пропитать металлом в изотермических условиях, т. е. получить оболочку из псевдосплава, а затем установить ее в литейную форму и соединить с матричным металлом благодаря механическим и диффузионным связям. По условиям формирования связей с матричным металлом такие оболочки ближе к оболочкам, получаемым пластической деформацией и гальванопластикой. Пористые оболочки изготовляют из пластифицированных металлических порошков прессованием. Процесс изготовления оболочки состоит из двух операций приготовления заготовки (сырца) оболочки и ее термической обработки, при которой происходит удаление органических материалов и твердофазное спекание порошков.  [c.680]

В материалах дисперсионного типа принято различать два типа структур статистическую, когда частицы компонентов распределены в материале случайным образом (например, при формировании материала из смеси порошков с одинаковой крупностью), и матричную, когда изолированные частицы одной из составляющих фаз (обычно топливной) равномерно распределены в непрерывной матричной фазе (металлической, графитовой, окисной).  [c.7]

Схема одной из установок, предназначенных для получения металлических композиционных материалов методом вакуумнокомпрессионной пропитки [105], показана на рис. 48. Установка представляет собой камеру, имеющую две зоны нагрева зону предварительного нагрева формы с упрочнителем 6 и зону плавления матричного металла 8, являющуяся одновременно и зоной пропитки. Нагрев этих зон осуществляется с помощью двух печей сопротивления, установленных на разных уровнях по высоте снаружи камеры. Сверху камера герметично закрыта крышкой. В крышке имеется отверстие с уплотнением, в котором перемещается вверх и вниз полый шток контейнера 12 с загруженным в него упрочнителем. Контейнер представляет собой герметичную металлическую оболочку, дно которой, по сравнению со стенками, имеет меньшую толщину. На представленном здесь рисунке контейнер имеет форму, позволяющую изготовить из композиционного материала изделия в виде колец. Шток контейнера связан с вакуумным насосом.  [c.105]

Высокий модуль упругости металлических матричных сплавов по сравнению с органическими материалами особенно важен в высокомодульных композиционных материалах. На рис. 1 сравниваются удельные модули упругости нескольких компоги ионных материалов, армированных волокнами. Отметим, что хотя композиционный материал бор — эпоксидная смола с однонаправленным расположением волокон имеет наиболее высокие значения удельного модуля упругости в направлении волокон, его обобщенный удельный модуль упругости (псевдоизотропный О 60°) значительно нин<е, чем у композиции Борсик — алюминий. Удель ный модуль сдвига также выше для металла, армированного волокнами. Коэффициент жесткости Eld) очень важен для дина-мических конструкций, таких, как лопасти вентилятора газовой турбины и крупногабаритные самолетные профили  [c.16]

Высокие пластичность и ударная вязкость металлических матричных сплавов наиболее важные свойства в композиционных материалах, так как армирующий компонент не обладает хорошей ударной вязкостью. Пластичные металлические матрицы, такие, как алюминий, титан или никедехромовые сплавы при ударных нагрузках поглощают энергию пластической деформации, что очень важно для многих областей использования динамических конструкций. Пластичная матрица такя е позволяет притуплять вершину трещпны и уменьшать концентрацию напряжений в ре-  [c.16]


Следует отметить, что из всех металлических композиционных материалов наиболее разработан материал на основе алюминиевой матрицы, армированной борными волокнами диаметром 100— 140 мкм. Этот материал получают обычно методом диффузионной сварки пакета из полуфабрикатов, представляющих собой моно-слойную ленту из борных волокон, связанных между собой матричным металлом, нанесенным методом плазменного напыления. Для облегчения процесса диффузионного соединения часто применяют легкоплавкие прокладки между монослойными лентами, что позволяет резко снизить температуру и давление при диффузионной сварке и, следовательно , значительно увеличить размер  [c.356]

Изготовление металлических кохтозицнонных материалов может осуществляться несколькихш no o6a ni — пропиткой волокнистых упрочнителей расплавом матричного материала, диффузионным соединением пакетов пз чередующихся слоев фольги (алюминия, магния), и волокон, горячим прессованием.  [c.430]

Еще одна методика использования атомов, образовавшихся при разряде в потоке азота, кислорода или водорода, заключается в их замораживании в матрицу. (При этом молекулярные азот и кислород дают стабильные матрицы, а водород должен быть смешан с аргоном или другим матричным материалом.) Для этого можно использовать сверхш>юокочасготный разрад, хотя показано, что более шюокий выход атомов достигается при помощи электрического разряда постоянного тока между металлическими электродами в газовом потоке. Однако такие электроды применяются редко из-за их возможного взаимодействия с продуктами разряда. Рис. 4.4 иллюстрирует основные способы использования разряда для получения матрично-изолированных частиц.  [c.70]

Композиционные материалы состоят из сравнительно пластичного матричного материала и более твердых и прочных веществ, являющихся упрочняющими наполнителями. Матрица связывает композицию и придает ей нужную форму. В зависимости от материала матрицы различают композиционные материалы с металлической матрицей или металлические композиционные материалы (МКМ), с полимерной — полимерные композиционные материалы (ПКМ) и с керамической — керамические композиционные материалы (ККМ), По типу упрочняющих наполнителей композиционные материалы подразделяют на дисперсноупрочненные, армированные или волокнистые и слоистые (рис. 137).  [c.231]

Из освоенных промьииленностью композиционных материалов ведущее место занимают металлические композиционные материалы на основе алюминия и его сплавов. Использование алюминия в качестве матричного материала обусловлено широким распространением его в технике, низкой плотностью, коррозионной стойкостью, возможностью регулировать механические свойства алюминиевых сплавов термической обработкой и подвергать их различным видам обработки давлением и литья.  [c.232]

Типичные микроструктуры композиционных материалов с металлической матрицей, полученные с использованием указанных выше армирующих упрочнителей, описаны ниже. На рис. 15 приведена микроструктура боралюминиевого композиционного материала, содержащего 45—50 об. % борного волокна диаметром 100 мкм, достаточно равномерно расположенного в алюминиевой матрице. Наблюдаемые трещины в некоторых волокнах появились, по-видимому, в процессе изготовления шлифа. В центре волокна четко виден сердечник, состоящий из борида вольфрама. На рис. 16 приведена микроструктура углеалюминиевого композиционного материала, в которой видно равномерное распределение углеродных волокон типа ВМН (с прочностью 200 кгс/мм и людулем упругости 24 ООО кгс/мм ). При увеличении 650 отсутствуют видимые следы взаимодействия. Материал получен пропиткой каркаса углеродных волокон матричным алюминиевым расплавом под давлением 50 кгс/см . На рис. 16, б при увеличении 1350 в том же материале видны следы взаимодействия в виде игольчатых  [c.46]

Вот уже много лет углеродные волокна так же, как и нитевидные кристаллы, привлекают внимание разработчиков композиционных материалов с металлической матрицей. Однако оптимальные механические свойства, близкие к теоретическим, были получены лишь несколькими исследователями, что, по-видимому, объясняется чрезвычайно высоким темпом разупрочнения углеродных волокон вследствие их взаимодействия с матричными металлами. Для изготовления углеметаллических композиционных материалов используют различные технологические процессы [17, 45, 55] (табл. 3).  [c.356]

В работе [38] исследовали различные технологические способы получения композиционных материалов с металлической матрицей, армированной углеродными волокнами, — горячее прессование волокон, предварительно покрытых матричным или вспомогательным металлом или сплавом, электроформование, горячую экструзию смеси волокон с порошком матричного сплава и жидкофазную пропитку. Хорошие результаты получены при электролитическом осаждении на углеродные волокна таких металлов, как медь, никель, свинец и олово отмечаются значительные трудности при нанесении"алюминиевого покрытия. В работе сделана попытка совместного осаждения алюминия и коротких углеродных волокон из эфирных растворов в инертной атмосфере. Углеродные волокна предварительно измельчались до длин порядка 1 мм (использовали волокна с предварительной поверхностной обработкой и без нее, а также с медным покрытием толщиной 2 мкм) и затем вводились в электролит. Главной трудностью при реализации процесса было комкование волокон, приводящее к закорачиванию электрической цепи. Избежать этого явления можно лишь при уменьшении концентрации волокон в электролите, в связи с чем оказалось невозможным получение образцов композиции с содержанием армирующих волокон более  [c.368]

II Нанесение барьерных покрытий на армирующие наполнители, например покрытий нз тугоплавких металлов, карбидов титана, гафния, бора, нитридов титана, бора, окислов иттрия на волокна углерода, бора, карбида кремния. Некоторые барьерные покрытия на волокнах, пренмуществеино металлические, служат средством улучшения смачивания волокон матричными расплавами, что особенно важно прн получении композиционных материалов жидкофазнымн методами [5]. Такие покрытия часто называют технологическими  [c.493]


III. Применение в композиционных материалах металлических матриц, легированных элементами с большим сродством к армирующему наполнителю, чем металл матрицы, или поверхностно-активными добавками. Происходящее при этом изменение химического состава границ раздела должно препятствовать развитию межфазного взаимодействия [6] Легирование матричных сплавов поверхностно-активными или карбидообразующимн добавками, так же как и нанесение технологических покрытий иа волокна, может способствовать улучшению смачиваемости металлическими расплавами армирующего наполнителя.  [c.493]

Современные жаропрочные сплавы плавят и заливают в условиях вакуума. Оксид кремния и силикаты в этих условиях менее устойчивы, чем тугоплавкие оксиды. Для некоторых литейных форм (стержней) требуются такие материалы, когда наличие кремнезема в составе форм исключается вообще например, при применении солей для растворимых стержней или применении металлических порошков для изготовления отдельных частей форм в виде пористой металлокерамики, пропитываемой матричным металлом. Все это — химическая инертность по отношению к основным оксидам, необходимость высокой огнеупорности для изготовления отливок из специальных сплавов, устойчивость в вакууме, применение солей для растворимых стержней, применение металлопорошков — делает нежелательным наличие кремнезема в составе литейных форм. Поэтому возникла необходимость изготовления форм (стержней) из чистых оксидов — оксидной керамики, из солей соле-керамики, из спеченных металлопорошков.  [c.140]

Следует подчеркнуть, однако, что этот подход трактовке электронных свойств переходных и благородных металлов, а также обширного круга иных металлических систем пока не получил надежного математического обоснования. Попытки рассчитать структуру зон, исходя из первых принципов и используя представление ЛКАО (8.10) для -зоны, не имели успеха в количественном отношении. В случае кристаллических материалов оказывается возможным последовательно прийти к двухзонной модели, построив полуэмпирический модельный гамильтониан, матричные злементы которого можно подогнать так, чтобы воспроизвести зонную структуру (см., например, [81). Однако эти подгоночные параметры нелегко найти по известным атомным потенциалам или волновым функциям. К тому же нет никаких оснований полагать, что те же значения параметров подойдут и для неупорядоченных систем типа жидкого металла, где локальные свойства симметрии и межатомные расстояния не совсем такие, как в идеальных кристаллах. Двухзонная модель ценна тем, что она дает очень простое качественное описание, но ее достоинства не удается поднять до уровня высокой количественной точности.  [c.466]

Применим предложенный метод к расчету матричных теплообменников [245]. Контактные матричные рекуператоры (КМР), или теплообменники, нашли широкое применение в различных отраслях науки и техники [246, 247]. Рассмотрим работу одного из типов таких теплообменников, собранных попеременно из перфорированных пластин, хорошо проводящих тепло, и прокладок из плохо проводящих тепло материалов. В прокладках предусмотрены окна прямоугольной формы, образующие в собранном пакете каналы для чередующихся встречных потоков холодного и горячего газов. Если ширина каждого из каналов намного больше его высоты, то рассматриваемый теплообменник схематически можно заменить рядом плоских параллельных щелей, разделенных металлическими перегородками шириной Ь. При достаточно большом числе перегородок, учитывая естественную симметрию системы, можно ограничиться рассмотрением теплообмена между любыми двуми соседними каналами, разделенными стенкой (рис. 10.4.5). Расчет процесса теплопередачи обычно сводится к решению системы дифференциальных уравнений первого порядка для среднемассовых температур обоих каналов и средней температуры стенки при условии, что коэффициенты теплоотдачи в обоих каналах и коэффициенты теплопроводности стенки известны [245]. Однако, не касаясь вопроса о дополнительных трудностях, возникающих при экспериментальном определении этих коэффициентов, появляются сомнения относительно применимости подобной методики в общем случае. Это связано с тем, что использование фазовых коэффициентов теплопередачи, полученных при стандартных гидродинамических условиях, даже при расчете двухфазного теплообмена без учета термического сопротивления стенки, который является частным случаем рассматриваемого процесса, приводит к существенным ошибкам [248].  [c.199]

Металлы, армированные волокнами - композиционные материалы с металлической матрицей и упрочнителями в виде волокон. Упрочнителями служат волокна бора, углеродные волокна, нитевидные кристаллы тугоплавких соединений, вольфрамовая или стальная проволока. Матричный материал выбирают из учета назначения композиционного материала (коррозионная стойкость, сопротивление окислению и др.). В качестве матриц используютлегкие и пластичные металлы, алюминий, магний и их сплавы. Количество упрочнителя составляет по объему 30-50%. Металлы, армированные волокнами, применяются в авиационной и ракетной технике.  [c.171]


Смотреть страницы где упоминается термин Металлические матричные материалы : [c.170]    [c.29]    [c.117]    [c.346]   
Смотреть главы в:

Композиционные материалы  -> Металлические матричные материалы



ПОИСК



Матричные ФПУ

Металлические материалы



© 2025 Mash-xxl.info Реклама на сайте