Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловое и магнитное рассеяние

Тепловое и магнитное рассеяние  [c.96]

С одной стороны, это означает системность самой структуры математической модели ЭМУ, что связано с необходимостью учета всей совокупности различных его внутренних физических процессов. Основное по значимости и функциональному назначению энергетическое преобразование в ЭМУ (из электрической в механическую энергию или наоборот) неизменно сопровождается сопутствующими преобразованиями, рассеянием энергии — созданием теплового поля, силового поля вибраций, магнитного поля рассеяния. Именно совместное проявление взаимосвязанных физических процессов — электромагнитных, тепловых, силовых формирует в итоге рабочие свойства ЭМУ и определяет во многих случаях их функциональную пригодность. Поэтому для строгого решения задач в общем случае ЭМУ должно рассматриваться как система с неоднородными, различающимися по физической сущности процессами, в которой существуют дополнительные каналы преобразования энергии, зависимые в энергетическом плане от основного, т.е. существующие за счет его энергетической не-идеальности.  [c.97]


При выводе формулы (9.28) мы учитывали лишь скорость направленного движения электронов (дрейфовую скорость). Это естественно, так как хаотическое тепловое движение носителей-заряда не мол<ет привести к их направленному перемещению в магнитном поле. Кроме того, мы молчаливо допускали, что все носители в проводнике обладают одной и той же дрейфовой скоростью. Такое допущение может быть оправдано для металлов и вырожденных полупроводников, в которых ток переносится электронами, практически обладающими одной и той же энергией (фермиев-ской), и совершенно не применимо к невырожденным полупроводникам, в которых носители, имеющие различную энергию, могут обладать и различной скоростью дрейфа из-за зависимости их подвижности от скорости теплового движения (точнее, от времени свободного пробега). Например, при рассеянии на заряженных примесях дрейфовая скорость высокоэнергетических носителей (носителей, обладающих высокими скоростями теплового движения) будет больше, чем низкоэнергетических при рассеянии же на тепловых колебаниях решетки, наоборот, дрейфовая скорость высокоэнергетических электронов будет ниже, чем низкоэнергетических. Более строгая теория, учитывающая это обстоятельство, приводит к следующему выражению для постоянной Холла  [c.267]

Различие в поглощении тепловых (инфракрасных) лучей при распространении их на одинаковое расстояние в )азличных средах Исследование рассеяния магнитного потока в намагниченных и ферромагнитных материалах  [c.429]

II 345 льда II 24 поток I 254 производство II 254 спиновой системы II 276, 277 Эффект де Гааза — ван Альфена I 265—275 в благородных металлах I 290, 291 в переходных металлах I 308 в щелочных металлах I 284, 285 измерение I 265, 266 и неоднородность магнитного поля I 282 и плотность уровней I 273, 274 и рассеяние I 274, 275 квантование площади орбиты I 271—273 минимальный размер образца I 271 (с) тепловое уширение I 274 Эффект Гантмахера I 280, 281 Эффект Зеебека I 39, 40, 257 (с)  [c.416]

Выполняя свою основную функцию по электромеханическому преобразованию энергии, ЭМУ вызывает побочные вторичные явления — тепловые, силовые, магнитные, оказывающие значительное, а в ряде случаев, например в гироскопических ЭМУ [7], и определяющее влияние на показатели объекта. Нагрев элементов ЭМУ определяет его долговечность и работоспособность, а в гироскопии — также точность и готовность прибора. Деформации и цибрации в ЭМУ возникают из-за наличия постоянных и периодически меняющихся сил различной физической природы, в том числе сил температурного расщирения элементов, трения, электромагнитных взаимодействий, инерции, от несбалансированности вращающихся частей, неидеальной формы рабочих поверхностей опор и технологических перекосов при сборке и др. и существенно влияют на долговечность и акустические показатели ЭМУ, а в гироскопии — через смещение центра масс и на точность прибора. Магнитные поля рассеяния ЭМУ создают нежелательные взаимодействия с окружающими его элементами, приводящие к дополнительным потерям энергии, вредным возмущающим моментам, разбалансировке и пр.  [c.118]


Рассмотрим способы, которыми можно установить присутствие света в некоторой точке пространства непосредственное восприятие рассеянного света, фотографические испытания, тепловой эффект и другие. Все эти способы в действительности могут быть, по-видимому, сведены к фотоэлектрическому эффекту и к рассеянию света. В самом деле, при встрече с л атериальным атомом световой квант обладает определенной, зависящей от внещних факторов вероятностью поглощения или рассеяния. Если, далее, теории удастся определить эти вероятности, пренебрегая действительными перемещениями энергии, то можно будет правильно определить в каждой точке средние значения сил взаимодействия между излучением и материей. Следуя электромагнитной теории (в согласии с этой точкой зрения находится также принцип соответствия Бора), я склонен предположить, что для материального атома вероятность поглощения или рассеяния светового кванта определяется геометрической суммой каких-либо из векторов, определяющих сталкивающиеся с этим атомом фазовые волны. Последнее предположение в действительности полностью аналогично гипотезе, принимаемой в электромагнитной теории, где интенсивность наблюдаемого света связывается с величиной равнодействующей электрического вектора. Так, в эксперименте Винера фотографическое действие происходит лишь на узловых плоскостях электрического вектора согласно электромагнитной теории магнитная энергия света не является наблюдаемой.  [c.637]

Все методы основаны на взаимодействии первичного излучения (теплового, рентгеновского, электрического и магнитного поля, потока фотонов, электройов, ионов, нейтральных атомов и молекул и т. д.) с веществом и анализе рассеянного или (чаще) вторичного излучения [1]. Таких методов известно несколько десятков, однако наибольшее распространение получили четыре Оже-электронная спектро-  [c.151]

Мы будем рассматривать нейтрон и кристаллическую решётку как одну квантовомеханическую систему, состояние которой характеризуется заданием импульса нейтрона р, его спинового магнитного квантового числа и, квантовых чисел гц всех осщ1лляторов, описывающих тепловые колебания решётки, и магнитных квантовых чисел ядер щ ji)-Рассеяние нейтронов можно рассматривать как переход системы из состояния  [c.370]

Э л е к т р о м а г н и т н о е взаимодействие. а) Взаимодействие магнитного момента И. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны к-рых порядка или больше атомных размеров (энергия Я < 10 эв и в особенности тепловые Н.) широко используется для исследования магнитной структуры и динамики твердых тел (см. Магнитное рассеяние нейтронов. Магнитная нейтронография). Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных нейтронов (см. Ноляриааци.я нешпронов).  [c.381]

Трибология - наука о трении и процессах, сопровождающих трение [1]. Трибология как научная дисциплина охватывает экспериментально-теоретические исследования физических (механических, энергетических, тепловых, магнитных), химических, биологических и других явлений, связанных с трением. Получили развитие новые разделы трибологии трибофизика, трибохимия и трибомеханика. Для оценки трения необходимо учитывать взаимосвязь и взаимоотношения между контактирующими телами, внешними энергетическими воздействиями, накоплением и рассеянием энергии, а также последствия трибологических процессов. Процессом называется последовательность изменений свойств и состояний системы или ее элементов во времени, которые могут происходить одновременно и последовательно и приводить к изменению химического состава и строения материала (химические, ядерные изменения) либо энергетического состояния и свойств (физические изменения). Трибологические процессы являются вьшужденными, они могут быть обратимыми (упругая деформация, повышение температуры) и необратимыми (пластическая деформация, изнашивание).  [c.7]

ФАКТОР <есть причина, движущая сила какого-либо процесса, явления, определяющая его характер или отдельные его черты магнитного расщепления — множитель в формуле для расщепления уровней энергии, определяющий величину расщепления, выраженный в единицах магнетона Бора размагничивающий— коэффициент пропорциональности между напряженностью размагничивающего магнитного поля образца и его намагниченностью структурный—величина, характеризующая способность элементарной ячейки кристалла к когерентному рассеянию рентгеновского излучения, гамма-излучения и нейтронов в зависимости от внутреннего строения ячейки) ФЕРРИМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты ионов, входящих в его состав, образуют две или большее число подсистем (магнитных подрещеток) ФЕРРОМАГНЕТИЗМ—состояние кристаллического вещества, при котором магнитные моменты атомов или ионов самопроизвольно ориентированы параллельно друг другу ФИЛЬТРАЦИЯ—движение жидкости или газа через пористую среду ФЛУКТУАЦИЯ <есть случайное отклонение значения физической величины от ее среднего значения, обусловленное прерывностью материи и тепловым движением частиц абсолютная — величина, равная корню квадратному из квадратичной флуктуации квадратичная 01ли дисперсия) равна среднему значению квадрата отклонения величины от ее среднего значения относительная равна отношению абсолютной флуктуации к среднему значению физической величины) ФЛУОРЕСЦЕНЦИЯ — люминесценция, быстро затухающая после прекращения действия возбудителя свечения ФОРМУЛА (барометрическая — соотношение, определяющее зависимость давления или плотности газа от высоты в ноле силы тяжести Больнмаиа показывает связь между энтропией системы и термодинамической вероятностью ее состояния Вина устанавливает зависимость испускательной способности абсолютно черного тела от его частоты в третьей степени и неизвестной функции отношения частоты к температуре)  [c.292]


К, любых физ, величин почти всегда сопровождаются попеременным превращением энергии одного вида в энергию другого вида. Так, оттягивая маятник (груз на нити) от положения равновесия, мы увеличиваем потенц. энергию груза, запасённую в поле тяжести при отнускании он начинает падать, вращаясь около точки подвеса как около центра, и в крайнем ниж. положении вся потенц. энергия превращается в кинетическую, поэто,му груз проскакивает это равновесное положение, и процесс перекачки энергии повторяется, пока рассеяние (диссипация) энергии, обусловленное, напр,, трением, не приведёт к полному прекращению К, В случае К, электрич, зарядов и токов в колебате.гьнпм контуре или электрич. и магн. полей в эл.-магн. волнах роль потенциальной обычно играет электрич. энергия, а кинетической — магнитная. Иногда, когда речь идёт о К, тепловых, хим, и особенно ииформац. величин, такой энергетич, подход несколько условен, но вполне плодотворен.  [c.399]

В 1980-х гг. появилась гипотеза о круговороте плазмы в. магнитосфере Земли. Эксперим. подтверждение этой гипотезы получено при измерениях ионного состава Р. п.— среди энергичных частиц зарегистрирована значит, доля ионосферных ионов (ионов кислорода и молекулярных ионов). Хотя мн. аспекты процессов ускорения и переноса частиц в магнитосфере недостаточно ясны, в первом приближении Р. п. можно считать промежуточным резервуаром накопления энергичных частиц, перемещающихся по энергетич. шкале в процессе круговорота . Предполагается, что круговорот плазмы в магнитосфере Земли происходит по следующей схеме. В полярных областях вдоль открытых силовых линий геомагн. поля, уходящих в удалённые области магнитосферы, ионосферные ионы и электроны с энергией неск. эВ (превышающей их тепловую энергию) испаряются из плотных слоёв атмосферы, преодолевая гравитац. притяжение Земли (т, и. полярный ветер). Попадая в плазменный слой хвоста магнитосферы, эти частицы ускоряются до энергий порядка неск, кэВ и вовлекаются в конвективное движение плазмы к Земле, На внеш. границе Р. п. (на геоцентрич. расстояниях 6—10 На, Нд — радиус Земли) большие квазистационарные электрич. поля и сильно неоднородные магн. поля увеличивают энергию частиц ещё на один-два порядка. Далее, перемещаясь ближе к Земле, в район максимума потоков частиц Р, п. (2—5 На), в результате, рассеяния на колебаниях электрич. и магн. полей, частицы попадают в область всё более сильного магн. поля, испытывая индукд, ускорение вплоть до энергий в сотни МэВ. Те же процессы рассеяния, к-рые приводят к радиальному перемещению частиц к Земле, обусловливают их попадание в конус потерь (см. Магнитные ловушки). Он определяется соотношением между полем в вершине силовой линии (в экваториальной плоскости) и нолем вблизи торца геомагн. ловушки (в верх, слоях атмосферы). Частицы, у к-рых достаточно велика продольная (по отношению к магн. полю) компонента скорости при движении вдоль силовой линии, попадают в плотные слои атмосферы. Здесь они сталкиваются с ионами или нейтральными атомами и тормозятся, теряясь среди тепловых ионов. После переноса в полярные области заряж. частицы готовы вновь стать полярным ветром и начать новый цикл, Помимо высыпания в верх, атмосферу др. механизмом потерь является перезарядка энергичных частиц (см. Перезарядка ионов) на нейтральных атомах экзосферы. Этот процесс особенно важен для долгоживущих энергичных частиц. В целом различия в механизмах ускорения и потерь разных составляющих Р. п.— электронов, протонов и др. частиц — настолько  [c.208]

На фиг. 8.7, г показана зависимость теплового сопротивления этилсульфата гольмия от магнитного поля при 4,25 К [154]. При этой температуре можно не рассматривать перехода с максимальной разностью энергий, который не показан на фиг. 8.6, а. В рассеянии, вообще говоря, участвуют две группы фононов, но для значения Во = 0,55Т они совпадают и тепловое сопротивление имеет особенность.  [c.146]

Упругое рассеяние зависит от взаимной ориентации снинов взаимодействующих частиц. Спин — и только оп — может задавать выделенную ориентацию в частице, даже точечной. Исследование процессов, зависящих от ориентации спина, помогает понять природу спина, еще не до конца ясную. Для этих исследований создаются поляризованные мишени и пучки поляризованных частиц — протонов, дейтронов и электронов, а также мюонов (поляризация — преимущественная ориентация снинов в выделенном направлении). В поляризованных мишенях (содержащих водород или некоторые более тяжелые элементы) используется эффект, о котором мы рассказывали в 2.1.2 в связи с опытом Эйнштейна и де Гааза ориентация спиновых магнитных моментов — а соответственно и снинов, т. е. поляризация во внешнем магнитном поле. Но если в ферромагнетиках такая поляризация может происходить при любой температуре, при которой сохраняются ферромагнитные свойства, то для подавления деполя-ризациоппого влияния теплового движения в других веществах требуются сверхнизкие температуры.  [c.92]

Химические, физико-химические и биохимические воздействия, которые отнесены не к операциям III, а к операциям VII, поскольку они в большинстве случаев (за исключением титрометрических методик) предшествуют процедуре измерений, приводят также к самым различным физическим эффектам механическим — изменениям объема, давления, упругости, масс различных частей жидкостной системы, скорости, коэффициента поглощения и дисперсии звука тепловым — изменениям температуры оптическим — изменениям оптической плотности, коэффициентов рассеяния и отражения, оптической активности, двойного лучепреломления, спектральных характеристик люминесценции и света, прошедшего через среду, изменениям дисперсии света электрическим — изменениям пассивных электрических характеристик среды, их дисперсии, эффектам, связанным с изменениями ЭДС гальванических элементов и диффузионных потенциалов магнитным — изменениям магнитной проницаемости радиационным и радиационно-химическим — появлению радиоактивности и возникновению химических реакций изотопного обмена в результате введения в исследуемую пробу изотопных индикаторов (так называемых меченых атомов).  [c.34]



Смотреть страницы где упоминается термин Тепловое и магнитное рассеяние : [c.72]    [c.116]    [c.118]    [c.32]    [c.72]    [c.134]    [c.73]    [c.97]    [c.270]    [c.503]    [c.14]    [c.361]    [c.198]    [c.310]    [c.286]    [c.382]    [c.385]    [c.386]    [c.129]    [c.682]    [c.456]    [c.441]    [c.458]   
Смотреть главы в:

Физика дифракции  -> Тепловое и магнитное рассеяние



ПОИСК



Магнитное рассеяние



© 2025 Mash-xxl.info Реклама на сайте