Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия о ферме

Размножение нейтронов в решетке из урановых стержней и замедлителя удобно описывать с помощью вероятностей отдельных процессов, которые могут здесь иметь место. Эти представления изложены в обзоре Смита [1], затем в работах Ферми [3] и Вигнера [4]. Здесь приводится лишь краткий перечень основных понятий. Предположим, что среда, в которой происходит размножение, имеет бесконечные размеры, так что вероятность вылета наружу как быстрых, так и медленных нейтронов равна нулю. Рассмотрим историю N нейтронов от момента их рождения в процессе деления до момента захвата. Быстрые нейтроны могут вызвать появление вторичных быстрых нейтронов вследствие деления или причем деления более вероятны вследствие большего содержания этого изотопа в естественном уране.  [c.48]


Основные понятия о ферме 12  [c.38]

Введены некоторые основные понятия классической механики. Исходя из принципа Гамильтона (1.27), выведены уравнения движения Лагранжа (1.33), (1.35), откуда в свою очередь получен принцип Мопертюи (1.44). В заключение мы напомнили читателю принцип Ферма (1.45), ввели определение показателя преломления и рассмотрели процесс формирования изображения в аксиально-симметричной толстой оптической линзе.  [c.22]

Основные понятия гамильтоновой механики (импульсы р, функция Гамильтона Н, форма р dq — Hdt, уравнение Гамильтона — Якоби, о котором будет идти речь ниже) возникли при перенесении на общие вариационные принципы (и, в частности, на принцип стационарного действия Гамильтона, dt 0) некоторых весьма простых и естественных понятий геометрической оптики, управляемой частным вариационным принципом — принципом Ферма.  [c.218]

А. Волновые фронты. Рассмотрим коротко ) основные понятия геометрической оптики. Согласно экстремальному принципу Ферма, свет распространяется из точки Qq в точку за кратчайшее время. При этом скорость света может зависеть как от точки q ( неоднородная среда ), так и от направления луча ( неизотропная среда — например, кристаллы).  [c.218]

Автор, широко образованный педагог, прекрасно сознавая огромное значение статистической термодинамики для решения технических задач, показал формы и методы использования основных результатов статистики Больцмана и квантовых статистик Бозе — Эйнштейна и Ферми — Дирака при рассмотрении важнейших понятий термодинамики, как например внутренней энергии, теплоемкости, энтропии и т. д.  [c.7]

Резюмируя, можно утверждать, 4jo введение понятия эйконала и вывод основных уравнений (для А —> О позволили строго обосновать взаимосвязь геометрической оптики и электромагнитной теории света. Выявилось также, что постулаты, часто используемые для обоснований построений и законов геометрической оптики (например, принцип Ферма), могут рассматриваться как прямые следствия общей теории распространения электромагнитных волн и целесообразность их применения определяется лишь удобством решения тех или иных задач.  [c.277]

Цель этой главы — изложить электронную теорию металлов с квантовомеханической точки зрения. В разд. 2 будет показано, как из отдельных свободных атомов образуется твердый металл при этом особое внимание уделяется тому факту, что валентные электроны свободного атома при образовании металлического состояния становятся нелокализованными. В разд. 3 и 4 рассматриваются свойства нелокализованных электронов (электронов проводимости) и модели, применяемые для описания их поведения в твердом теле. Подробно обсуждаются две модели 1) модель свободных электронов, из которой можно получить основные выражения для плотности состояний, теплоемкости, магнитной восприимчивости ИТ. д., и 2) модель почти свободных электронов, с помощью которой можно найти величины, определяющие ширину запрещенной зоны. В разд. 5 вводится понятие поверхности Ферми, а в разд. 6 излагаются наиболее эффективные методы определения параметров, характеризующих эту поверхность. Последние три раздела этой главы посвящены анализу роли электронов проводимости в сплавах (разд. 7), ферромагнетизму (разд. 8) и сверхпроводимости (разд. 9).  [c.55]


Эта задача является усложненным вариантом задачи из 1.1, где усилия в стержнях можно было легко определить только из уравнений проекций, не находя реакции опор и не привлекая понятие момента силы. Аналогично можно поступить и в этой задаче, однако порядок системы линейных уравнений, описывающей равновесие всех узлов, будет велик, поэтому, во-первых, надежно решить такую систему можно только с помощью компьютера ( 15.1, с. 350), во-вторых, таким образом будет проделана лишняя работа, так как система уравнений содержит усилия всех стержней, в том числе и тех, которые по условию задачи не требуется определять. Поэтому для решения сложных ферм, содержащих большое число стержней, применим метод Риттера, основная идея которого — независимое определение усилий в стержнях. Эту же идею можно с успехом применять и в других задачах статики.  [c.38]

Настоящая глава и следующая гл. 10 не относятся к числу наиболее легких в данной книге ), но, несомненно, они самые важные. Здесь мы найдем все важнейшие новые понятия, относящиеся к квантовой теории твердых тел, а именно зоны разрешенных энергий, запрещенные зоны, поверхности Ферми, эффективные массы и дырки. Изложение базируется на основных экспериментах, используемых для нахождения формы поверхности Ферми, которая определяется как поверхность постоянной энергии гр в -пространстве.  [c.307]

Этими двумя приближениями будут модель еаза свободных электронов и зонная модель почти свободных электронов. Первая модель позволит нам с помощью статистики Ферми вычислить основные величины, характеризующие электроны проводимости (например, теплоемкость или плотность состояний) на ее основе нам будет легко понять смысл тех модификаций, к которым приводит использование более реалистичных приближений. Из второй модели мы увидим, что спектр разрешенных состояний не является непрерывным, а существуют запрещенные энергетические зоны. Это приводит к понятию зонной структуры, весьма важной для детального понимания теории металлов. Кроме этих моделей, мы кратко опишем еще два приблингения (будут указаны лишь физические допущения, лежащие в их основе) метод ячеек и метод ортогонализованных плоских волн. Эти последние методы включены потому, что они позволяют точнее рассчитывать более тонкие свойства кристаллической решетки — соответственно сжимаемость и детали зонной структуры данного кристалла.  [c.67]

Наконец, о модели кварковых мешков. Развивая феноменологическую теорию путем введения упрощенных моделей и не имея определенных надежд точно описать динамику взаимодействия кварков, мы предполагаем, удовлетворяя идее асимптотической свободы, что внутри области, именуемой мешком и имеющей размер адронов (т.е. измеряемой в единицах fm = 10 см), кварки при полном присутствии глюонного газа (т.е. поля взаимодействия кварков) не асимптотически, а вообше свободны. Чтобы эта смесь идеальных ферми- и бозе-газов не разлеталась во все стороны, разрушая идею конфайнмента, стенки мешка создают длвление (точнее, его создает физический вакуум , окружающий мешок), уравновешивающее внутреннее давление идеальной кварк-глюонной плазмы. Так как мешок моделирует адронное состояние, то он заполнен скомпенсированной по цветам смесью и поэтому считается в целом белым. При очень высоких плотностях ядерной материи и температурах мешки могут перекрываться, поэтому кварк-глюонная плазма может находиться в мешках значительно больших размеров, чем 10 см, как это, возможно, было в первые моменты после Большого Взрыва Вселенной (см. том 1, 5, реликтовое излучение) и, может быть, реализуется внутри гигантских квазаров и тяжелых нейтронных звезд. В этих случаях термодинамическое рассмотрение становится более адекватным хотя бы потому, что для больших мешков, содержащих много ядерного материала, начинает реализовываться принцип термодинамической адди-тивиости (мешок же, соответствующий одному нейтрону или протону, на равновесные части не делится), без которого (см. том 1, 4) невозможно введение такого основного термодинамического понятия, как температура системы (а следовательно, и других термодинамических величин, характеризующих равновесное состояние многочастичной системы).  [c.242]


Электронная теория металлов. Основы электронной теории металлов были заложены Друде и Лоренцем [1]. В их теории предполагалось, что в металле существуют два типа электронов — свободные и связанные. Много лет спустя это предположение было обосновано с помощью зонной теории, составляющей часть современной квантовой теории твердого тела. Модель свободных электронов с успехом объясняет хорошую электро- и теплопроводность металлов. Вместе с тем каждый свободный электрон должен, согласно этой модели, давать вклад 1/2 к в теплоемкость в соответствии с одним из основных законов классической статистической механики — законом о равномерном расиределенин энергии по степеням свободы. Однако тако11 результат противоречит известному закону Дюлонга и Пти. Эта трудность аналогична трудности с законом Рэлея — Джинса в теории излучения абсолютно черного тела. Однако в отличие от последней трудность с теплоемкостью пе могла быть разрешена только с помощью теории Планка, а была преодолена лишь после разработки квантовой механики и введения понятия статистики Ферми.  [c.267]


Смотреть страницы где упоминается термин Основные понятия о ферме : [c.2]    [c.460]    [c.7]    [c.63]    [c.207]    [c.29]   
Смотреть главы в:

Теоретическая механика Издание 4  -> Основные понятия о ферме



ПОИСК



Ферма

Ферма Понятие

Ферми

Фермий



© 2025 Mash-xxl.info Реклама на сайте