Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Косой изгиб и изгиб с растяжением

При рассмотренных в этой главе видах сложных деформаций бруса — косом и пространственном изгибе, сочетании изгиба с растяжением или с сжатием — в опасных точках бруса возникает одноосное напряженное состояние, что позволяет просто оценить опасность возникших напряжений, сопоставив их расчетные величины с допускаемыми. Последние, как известно, определяются путем деления предельных напряжений на требуемый коэффициент запаса прочности. В свою очередь предельные напряжения (пределы текучести или прочности) определяют, испытывая материал на одноосное растяжение или, реже, на одноосное сжатие.  [c.296]


Сила Р, действующая в точке О, направленная вниз, вызовет в брусе напряжения сжатия —PjF, где f—площадь поперечного сечения. Таким образом, общий случай внецентренного сжатия (растяжения) сводится к совместному действию косого изгиба и простого сжатия (растяжения). Пусть координаты точки Л будут т и п. Найдем напряжение в какой-либо точке В с координатами у и 2. Разложим момент Р-АО, действующий в плоскости АОх, на два момента, действующих в главных плоскостях гОх и уОх. Тогда получим момент Рп в плоскости  [c.307]

Расчет на прочность зависит от вида напряженного состояния в опасной точке. При растяжении (сжатии), изгибе (прямом и косом), при сочетании изгиба с растяжением (сжатием) в опасной точке бруса возникает линейное (одноосное) напряженное состояние.  [c.196]

К первой группе относятся те случаи, при которых в опасных точках бруса напряженное состояние либо является одноосным, либо может приближенно рассматриваться как одноосное в связи с незначительным влиянием на прочность бруса касательных напряжений, возникающих в его поперечных сечениях. Поэтому в таких случаях при расчетах на прочность теории прочности не используются. К первой группе относятся косой изгиб, а также внецентренное растяжение и сжатие.  [c.414]

Необходимо иметь в виду, что если точка приложения силы Р лежит на одной из главных осей инерции сечения, то получается сочетание прямого изгиба с растяжением (или сжатием). В противном случае получается косой изгиб и растяжение (или сжатие) и момент М = Ре должен быть разложен на составляющие и Мц относительно главных осей инерции.  [c.248]

В работах Б. Ф. Шорра [127], [128] рассматривается неустановившаяся ползучесть неравномерно нагретых стержней произвольного поперечного сечения при совместном косом изгибе и растяжении. Для решения задачи используется гипотеза упрочнения в формулировке (14),. (17). Предполагается, что величина а в формуле (17) связана с абсолютной температурой следующей зависимостью  [c.260]

Применив метод сечений, найдем, что в любом поперечном сечении бруса действуют изгибающие моменты Мр = = Рур и Мр = Р2р, а также продольная сила N = Р (рис. 140, б). Нетрудно заметить, что здесь, как и в рассмотренном выше случае, имеет место совместное действие косого изгиба с осевым растяжением (сжатием). А потому формула для определения напряжения в произвольной точке сечения с координатами 2 и у будет аналогична (12.19), т. е.  [c.204]


При внецентренном растяжении—сжатии в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. При положительных Хд и у по крайней мере одна из величин, X и у, входящих в уравнение (4.29), должна быть отрицательной. Следовательно, если точка приложения силы Р находится в первом квадранте, то нейтральная линия проходит с противоположной стороны центра тяжести через квадранты 2, 3 и 4 (рис. 169).  [c.157]

Если в некоторой точке поперечного сечения бруса одновременно возникают нормальные и касательные напряжения, то напряженное состояние в этой точке двухосное (плоское) и для расчета на прочность надо определить эквивалентное напряжение, т. е. применить ту или иную гипотезу прочности. Нормальные и касательные напряжения одновременно возникают при работе бруса на кручение и растяжение или сжатие, на изгиб и кручение, на изгиб с кручением и с растяжением или со сжатием. Во всех этих случаях расчет выполняют на основе гипотез прочности. При прямом или косом  [c.299]

Методика расчета на прочность существенно зависит от вида напряженного состояния. Так при растяжении (сжатии), прямом и косом изгибе, при сочетании изгиба с растяжением (сжатием) в опасной точке бруса имеет место одноосное напряженное состояние и условие прочности записывается в виде  [c.206]

В 9.1 установлено, что в том случае, когда моменты инерции сечения относительно главных центральных осей равны между собой, косой изгиб бруса невозможен. В связи с этим невозможен косой изгиб брусьев круглого сечения. Поэтому в общем случае действия внешних сил брус круглого сечения испытывает сочетание следующих видов деформаций прямого поперечного изгиба, кручения и центрального растяжения (или сжатия).  [c.377]

Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса. При внецентренном растяжении (сжатии) равнодействующая внешних сил не совпадает с осью бруса, как при простом растяжении,, а смещена относительно оси Z и параллельна ей (рис. 5.31).  [c.117]

Расстояние е от продольной силы до оси бруса называется эксцентриситет о м. Пусть точка пересечения продольной силы с поперечным сечением — полюс силы — имеет координаты ур и Хр в системе координат главных центральных осей. Приведя силу к оси бруса, можно представить внецентренное сжатие (растяжение) как сочетание центрального сжатия (растяжения) и чистого косого изгиба (рис. 6.6), вызванного изгибающими моментами Му— Ыгр и М — Ыур.  [c.163]

Косой изгиб в пластической области. Как показано, де-формации балки при косом чистом изгибе связаны с поворотом плоских сечений относительно нейтральной оси, не перпендикулярной к плоскости действия изгибающих моментов. Вследствие этого процесс пластической деформации при косом изгибе имеет характер, соверщенно аналогичный характеру при плоском изгибе, и сводится к постепенному распространению пластической деформации от крайних, наиболее напряженных в упругой области волокон, на волокна, находящиеся на меньшем расстоянии от нейтрального слоя. В частности, при пластической деформации без упрочнения напряжения становятся равными соответствующему пределу текучести в точках все увеличивающихся частей растянутой и сжатой зон сечения, причем, однако, постепенно изменяется направление нейтральной оси сечения. За предельное состояние балки, аналогично случаю плоского изгиба, можно принять такое, при котором сечение балки оказывается разделенным на две зоны, в точках одной из которых напряжения равны пределу текучести при растяжении, в точках другой — пределу текучести при сжатии. Поэтому, в случае равенства последних, имеем на основании (7.1)  [c.244]


Мы получили формулу для нормального напряжения при косом изгибе. Обычно положительное направление оси Y выбирают так, что оно указывает зону растяжения балки при изгибе моментом М , а положительное направление оси Z указывает зону растяжения от момента Му. Тогда моменты и Му в формулу (15.1) вносим по абсолютному значению, а знак о определяется по знаку координат у и z. Следовательно, в случае, представленном на рис. 185, момент М в I и II четвертях дает напряжение а с плюсом, а в III и IV четвертях с минусом момент Му в II и III четвертях дает напряжение с минусом. В случае балки, заделанной правым концом, при действии сил, изображенных на рис. 185, получим  [c.275]

Сопоставляя уравнение нулевой линии при внецентренном растяжении (15.11) с уравнением нейтральной оси при косом изгибе (15.2), заключаем, что они отличаются лишь свободным членом-, а потому и для нулевой линии действительно соотношение (15.3). В самом деле, разделяя (15.14) на (15.13), получаем  [c.282]

Внецентренная нагрузка. В общем случае внецентренного нагружения призматический стержень испытывает одновременную деформацию растяжения или сжатия и чистого косого изгиба. Внутренние усилия в каждом поперечном сечении стержня приводятся к осевому продольному усилию Л/д. = Р и двум изгибающим моментам Му = Ргр и Мг = Рур, возникающим в главных центральных плоскостях инерции хг и ху стержня. Здесь Р — действующие растягивающие (сжимающие) силы, приложенные не в центре тяжести концевых сечений стержня, а в точках с координатами Ур и 2р (рис. 113).  [c.172]

Чувствительность материалов к концентрации напряжений в условиях сложного нагружения (растяжение с изгибом) оценивается путем испытания на растяжение с перекосом круглого образца с кольцевым У-образным надрезом, как предложено одним из авторов [1 ]. Перекос создается косой шайбой с углом 4, 6 и 8°, подкладываемой под головку образца.  [c.35]

Конечно, дело не в том, рассматривать ли подлежащие изучению вопросы как отдельную тему или как составную часть темы Изгиб . Важно показать учащимся, что знаний, полученных ими при изучении растяжения-сжатия и прямого изгиба, достаточно для выполнения расчетов на косой изгиб и сочетание изгиба и растяжения (сжатия). Не надо создавать у учащихся впечатления, что изучаются какие-то новые теоретические вопросы просто им даются практические рекомендации по применению принципа независимости действия сил к некоторым частным задачам сопротивления материалов. Надо постараться затратить минимум времени на эти рекомендации, а большую его часть посвятить решению задач. Неоднократно пробовали в виде эксперимента, не излагая данной темы и не давая никаких разъяснений, предлагать учащимся задачи на косой изгиб и на растяжение (сжатие) с изгибом. Сильные и даже средние учащиеся справлялись с этими задачами, хотя в отдельных случаях и требовалась небольшая подсказка, например Примените принцип независимости действи я сил , или Следите при суммировании за знаками напряжений , или Попытайтесь представить, какой характер деформирования бруса соответствует каждому из внутренних силовых факторов .  [c.139]

Рассмотрим определение коэффициентов запаса прочности при одноосном напряженном состоянии и при чистом сдвиге. Первый из этих видов напряженного состояния, как известно, возникает при растяжении (сжатии), прямом или косом изгибе и совместном изгибе и растяжении (или сжатии) бруса. Напомним, что касазельные напряжения при изгибе (прямом и косом) и сочетании изгиба с осевым нагружением в опасной точке бруса, как правило, невелики и при расчете на прочность ими пренебрегают, т. е. считают, что в опасной точке возникает одноосное напряженное состояние.  [c.560]

Первые три слагаемых в этой формуле такие же, как при расчете на косой изгиб и растяжение сплошного бруса, четвертое слагаемое соответствует нормальным напряжениям, возникающим в связи с непостоянством по длине погонного угла закручивания стержня "ф. Напряжение называется нормальным напря-  [c.412]

Таким образом, внецен-тренное растяжение—сжатие приводится к совместному действию растяжения — сжатия с изгибом. Изгибающий момент М, как было показано в 25 гл. 5, создает косой изгиб и может быть разложен  [c.119]

В первом разделе представлены основные формулы, относящиеся к расчетам как при простых видах деформации (растяжение и сжатие, кручение, изгиб), так и при сложном сопротивлении (косой изгиб, вкецентренное продольное нагружение, изгиб с кручением) в условиях статического и динамического нагружения расчетам на устойчивость, расчетам статически неопределимых систем, кривых стержней, тонкостенных и толстостенных сосудов.  [c.3]

Кроме кинофильмов выпускаются кинофрагменты—-немые ролики для 5-минутной демонстрации с минимальным количеством титров. Все комментарии при их показе дает преподаватель. Кинофрагменты поступают в полное распоряжение техникумов от заказавших их министерств и ведомств. По сопротивлению материалов к настоящему времени выпущены следующие кинофрагменты Метод сечений , Напряжения, линейные и угловые деформации , Статически неопределимые системы , Заклепочные соединения , Напряж енное состояние при кручении , Внутренние силовые факторы при поперечном изгибе , Эпюры поперечных сил и изгибающих моментов , Жесткость при изгибе , Косой изгиб , Изгиб с растяжением , Гипотезы прочности , Применение гипотез прочности , Обобщенный закон Гука , Контактные деформации напряжения (две части, первая посвящена точечному контакту, вторая — линейному) и др.  [c.34]


С косым изгибом тесно связана задача о внецентрен-ном растяжении и сжатии бруса. Под виецентреиным растяжением-сжатием понимается такой вид нагружения, когда равнодействующая продольных сил смещена относительно оси бруса. Точку приложения равнодействующей продольных сил в поперечном сечении называют полюсом координаты полюса обозначаются через Хо и г/о (рис. 42, а).  [c.41]

Обратимся к сложному изгибу с кручением и растяжением стержня прямоугольного сечения (рис. 12.12). В этом случае при возрастании внешней нагрузки стержень может перейти в состояние предельной упругости по одному из трех вариантов. Первый напоминает задачу о косом изгибе в состояние пластичности переходит малый объем материала в окрестности точки, наиболее удаленной от нейтральной линии (см. точку D на рис. 12.13а). Здесь возникают наибольщие нормальные напряжения (см. соответствующую эпюру там же на рис. 12.13а).  [c.223]

Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии. При внецент-ренном растяжении (сжатии) в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. Расстояние от начала координат до прямой ау + Ьх + с = Q, как известно из курса аналитической геометрии, определяется по формуле  [c.118]

Если предположить себе сочетание рассмотренного выше косого изгиба с осевым растяжением илн сжатием, го такое нагружение приводит к появлению в поперечных сеченкях стержня изгибающих моментов Мг и М . поперечных сил С г и и продольной силы У. Например, в сечении В консольного стержня (рис. 8.24) будут действовать следующие силовые факторы (без учета принятого ранее правила знаков)  [c.86]

Каждый из описанных методов облаоз.ает присущими ему и достоинствами и недостатками. Основным недостатком метода свободного профилирования нужно считать возможность искажения линий плавности на поверхности лопатки. При косом фрезеровании геометрические характеристики сечений меняются плавно, причем все сечения связаны единым законом образования, что существенно упрощает и делает более надежным контроль геометрии лопатки. Однако проектирование лопаток этим методом может привести к тому, что в результате разброса центров тяжести сечений в теле лопатки возникают недопустимо высокие напряжения изгиба от собственных центробежных сил (внецентренное растяжение). Для разгрузки лопатки от этих напряжений ей придается так называемый начальный погиб [39], при этом сечения лопатки перемещают относительно того положения, которое они занимали бы после косого фрезерования. Смещение сечений происходит при обработке лопатки на фрезерном станке путем перемещения фрезы вместе со шпиндельной бабкой в вертикальной плоскости по копиру, кривая которого строится в соответствии с величинами погибов в расчетных сечениях.  [c.63]


Смотреть страницы где упоминается термин Косой изгиб и изгиб с растяжением : [c.146]    [c.131]    [c.88]    [c.203]    [c.219]    [c.76]    [c.156]   
Смотреть главы в:

Краткий справочник машиностроителя  -> Косой изгиб и изгиб с растяжением



ПОИСК



Изгиб косой

Растяжение с изгибом

Швы косые

Шов косой



© 2025 Mash-xxl.info Реклама на сайте