Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стекло и оптические системы

Стекло и оптические системы  [c.532]

Следовательно, обычное стекло отражает очень малую часть падающего на него под прямым углом света и, как подтверждает повседневная практика, не может служить зеркалом. Вместе с тем эти 4% световой энергии, отражаемые при каждом прохождении границы воздух — стекло, играют существенную роль в сложных оптических системах, имеющих множество (12 —16) таких границ. Поэтому при конструировании сложных объективов, как правило, используют различные способы уменьшения отражения для системы стекло—воздух ( просветление оптики см. 5.5).  [c.75]


Необходимость защиты оптической системы микроскопа от воздействия высокой температуры потребовала разработки специальных линзовых, зеркально-линзовых и зеркальных объективов с увеличенным по сравнению с обычными системами рабочим расстоянием [119, 175, 180]. Применение объективов с большим рабочим расстоянием (от 15 до 60 мм) и числовой апертурой 0,2—0,65 позволяет, во-первых, существенно упростить конструктивное выполнение элементов рабочей камеры и захватов нагружающих устройств во-вторых, достаточно свободно разместить в рабочей камере устройство для защиты смотрового кварцевого стекла от осаждения конденсата и, в-третьих, расширить экспериментальные возможности испытательных установок по диапазону рабочих температур, видам нагружения и т. д. [119].  [c.85]

В крышке камеры имеется смотровое плоскопараллельное стекло 29 диаметром 50 и толщиной 1,5 мм. Для фотографирования микроструктуры используется микрофотонасадка типа МФН-8 для съемки на фотопластинки размером 9 X 12 см или МФН-12 для съемки на кинопленку шириной 35 мм. Оптическая система микроскопа разделена на две части. Вне рабочей камеры установки находятся тубус, осветительная система и окуляр, жестко соединенные с вертикальным валом 30, проходящим через систему подвижного  [c.164]

Тонкие магнитные пленки представляют собой твердотельные магнитные среды, в которых возможно управление зарождением, перемещением, фиксацией и аннигиляцией каждого домена. Они находят применение в логических и запоминающих системах, а также в различных магнитно-оптических устройствах. Для управления перемещением и фиксацией доменов необходимо, чтобы их магнитные поля выходили во внешнее пространство, а поэтому толщина пленки должна быть соизмерима с размерами доменов. Пленки такой малой толщины не могут применяться без немагнитных подложек, выполняемых из металлов, стекла, слюды, гранатов и других подходящих материалов. Пленки наносят на подложки напылением в вакууме, электрохимическим осаждением и эпитаксией. Покрытие подложек можно выполнять и из тонких пластинок, вырезанных из монокристаллов, которые прочно укрепляют на подложке и доводят полировкой до необходимой толщины.  [c.481]

Предварительный габаритный расчет оптической системы. Расчет производится на основании теории идеальной оптической системы и в предположении, что линзы являются тонкими, в предварительном расчете призмы и зеркала заменяют воздушным слоем, длина которого равна длине хода в них осевого луча, деленной на показатель преломления их стекла. Затем, исходя из необходимого расположения оптических элементов системы, их фокусных расстояний и диаметра одной из диафрагм, рассчитывают последовательно диаметры отверстий всех элементов по уравнениям тангенсов  [c.234]


Для выполнения точных работ используется оптическая система с экраном 3 и осветителем 4. На стекле экрана на темном фоне расположены две шкалы, по которым производится отечет. На верхнем окне проецируются показания оптического лимба, т. е. градусы и биссекторы минутной шкалы с ценой деления 10. Управление оптической системой, т. е. совмещение спиральных штрихов градусной и минутной шкалы, а также точную установку на секундной шкале производят ручкой 2. На шкалах экрана 3 установлен угол, равный 41° ЗГ 12". Достоинствами данной модели являются точность отсчета 3", возможность легко оценить на глаз деления до 1", воспроизводимость установки до 1".  [c.100]

При проектировании оптической системы измерительного прибора большой точности важно знать изменение толщины воздушного промежутка или толщины линзы в любом сечении, параллельном оси симметрии. Экспериментально такие отклонения можно определить с помощью пробного стекла по числу интерференционных колец, соответствующему воздушному промежутку I между контролируемой и пробной поверхностью. Согласно рис. 72, смещение центра кривизны а, равно  [c.203]

Рефлектор со стеклом в сборе крепится при помощи ободка и винтов к корпусу оптической системы, который в свою очередь крепится к основному корпусу фары при помощи регулировочных винтов и пружин. Направление светового луча регулируют вращением винтов, которыми изменяют положение оптической системы в корпусе фары.  [c.183]

В твердотельных лазерах (рабочее тело -рубин, стекло с неодимом и др.) накачка, как правило, производится специальными источниками излучения 3, направленными на рабочее тело I отражателем 4 (рис. 5.17). Для направления излучения и усиления генерации активный элемент помещают между двумя точно установленными зеркалами-отражателями - резонаторами 2, один из которых в целях вывода излучения из лазера делается полупрозрачным. Вышедшее из лазера излучение фокусируется специальной оптической системой 5 и в виде луча направляется на обрабатываемый объект б.  [c.244]

Следует различать два олу-чая 1) подложка является оптически более плотной, чем слой- 2) слой является оптически более плотным, чем подложка. Соответственно интерференционная картина будет наблюдаться в области углов падения, больших критического для материала слоя. Она будет осциллировать в первом случае вблизи спада кривой отражения материала слоя, во втором — материала подложки. Для иллюстрации на рис. 1.10 приведены рассчитанные в работе [55 ] по формуле (1.61) угловые зависимости при отражении в системе А1—стекло (случай оптически более плотной подложки) и А1—Ag (случай оптически менее плотной подложки). Амплитуда пиков интерференции зависит от величины = бс — б  [c.37]

Преобразователи ППТ-131, ППТ-142 и ПЧД-131 имеют визирное устройство для наводки их на объект в ПЧД-111, ПЧД-121 и ППТ-121 наводка на объект осуществляется с помощью визирных устройств, входящих в состав монтажного комплекта. Номинальное рабочее расстояние от пирометра до измеряемого объекта — 1 м. Рабочий спектральный диапазон преобразователей ПЧД определяется типом светофильтра и фотодиода, а ППТ — материалом оптической системы (флюорит, кварц, стекло марки К8), В преобразователях ППТ-142 оптическая система зеркальная, зеркало от загрязнения защищается лавсановой пленкой.  [c.346]

Кроме того, у оптической системы, составленной из нескольких оптических деталей, изготовленных из разных марок оптического стекла, возможны неодинаковые и по величине и по знаку изменения фокусных расстояний и фокальных отрезков, которые могут как суммироваться, так и взаимно вычитаться.  [c.199]

Три расчете коэффициента пропускания оптической системы с небольшим ходом луча в стекле деталей величину D достаточно брать с точностью до 0,001. По табл. 17 можно находить величины Dq для просветленных поверхностей с коэффициентом отражения Q. Например, для Q = 1,5%, в таблице имеется значение а = 0,015, которому соответствует ) = 0,0066. Эта величина одновременно является и величиной Dg.  [c.77]

Расчет потерь в оптической системе визира, состоящей из защитного стекла, объектива, призмы Шмидта с крышей, сетки и окуляра  [c.80]

Первая группа — элементы, которые характеризуют оптическое действие линзы и определяются при расчете оптической системы константы оптического стекла и технические требования к нему, радиусы кривизны (форма) поверхностей, толщина (по оси), световые диаметры, вид просветления или защиты поверхностей и допуски на качество поверхности, чистоту и центрировку. Расчетные радиусы кривизны должны быть округлены до ближайших значений по ГОСТу 1807—57.  [c.221]


Призмы, коллективы, первые линзы широкоугольных окуляров и другие детали, расположенные вблизи от плоскостей действительного изображения оптической системы. Линзы микрообъективов с увеличением 10 и меньше Линзы окуляров телескопических приборов. Окулярные призмы. Отражательные пластинки и зеркала коллиматор-ных приборов. Линзы окуляров микроскопов и лабораторных приборов. Выравнивающие стекла фотокамер. Линзы объективов, работающих в инфракрасной области в условиях солнечной засветки  [c.308]

Оптические системы и узлы is is о > h ХН il П ей Допуски под пробное стекло (полос) ° ° о в я III >.. м я 0) а, S 5 = S ss U2 W Й S 1 1 а о ill S  [c.414]

При воздействии микроорганизмов повреждаются стекла и оптические системы. При росте грибов на поверхности просветляющих покрытий резко снижаются оптические свойства линз. Биостойкость стекол также зависит от их химического состава. Силикатные стекла характеризуются достаточно высокой биостойкостью потеря их массы в культуральных жидкостях микрогрибов 0,02. .. 0,06 %. Фосфатные стекла обладают меньшей стойкостью  [c.532]

Таким образом, оптическая система не может увеличить яркости протяженного объекта и практически всегда несколько уменьшает ее вследствие неизбежных потерь на отражение света от поверхностей линз и поглощение в стекле. Тем не менее, оптическая система может оказаться полезной для улучшения видимости объектов при слабой освещенности. Причина лежит в возможности лучшего различения деталей. Как указывалось в 91, разрешающая способность глаза ухудшается при малых освещенностях. В ночных условиях, когда освещенность падает до десятитысячных долей люкса, разрешающая способность глаза изменяется примерно от величины в 1 до 1 , даже если освещенность предмета будет раз в десять больше освещенности фона. В таких условиях увеличение угла зрения, обеспечиваемое трубой, представляет очень большие преимущества для различения контура и крупных деталей объекта, практически неразличимых невооруженным глазом. В этом именно смысле оптические трубы и бинокли оказываются полезными в ночных условиях, что впервые было учтено М. В. Ломоносовым, который в 1756 г. построил первую ночезрительную трубу .  [c.345]

Даваемые объективами 6 и 10 вторичные изображения полевой диафрагмы проектируются на испытуемую поверхность 7 и зеркало 11. Компенсационная пластина 9 уравнивает длины хода в стекле двух пучков лучей. Отразившись от испытуемой поверхности и зеркала, пучки лучей, вновь пройдя микрообъективы 6 и 10, соединяются полупрозрачной пластиной 8 и объективом 13 вместе с зеркалом 14 направляются в окуляр 12, в фокальной плоскости которого и наблюдается изображение испытуемой поверхности и система интерференционных полос, образованная соединившимися пучками когерентных лучей. При фотографировании интерференционной картины зеркало 14 выводят из хода лучей и с помощью объектива 15 и зеркала 17 лучи направляют на фотопленку, помещенную в кадровом окне 16. Разность хода когерентных световых пучков создается децентрированием объектива 10. Оно вызывает разделение зрачков выхода оптической системы и тем самым создает в поле интерференции переменный наклон пучков, которые разделяет и собирает в фокальной плоскости объектив 13.  [c.92]

На крышке 6 рабочей камеры (см. рис. 1) смонтированы оптическая система 8 от микротвердомера ПМТ-3, вторично-электронный умножитель 11 и катодный повторитель 12. Печь 10 служит для прогрева умножителя перед началом измерений. В тубусе микроскопа установлено уплотнение 9 из нейтрального стекла. Наличие зеркала 7 светлопольного и темнопольного изображения в микроскопе позволяет работать без специальной кварцевой оптики. Источником света служат газоразрядные лампы ПРК-7 и ДКСШ-1000, площадь освещаемого участка составляет 0,3 мм . Светофильтры вставляются в корпус лампы. При спектральных исследованиях между микроскопом и лампой устанавливается двойной монохроматор ДМР-4.  [c.33]

Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]

В 50—70-х годах XIX в. в самостоятельную дисциплину, тесно связанную с инструментоведением, оформляется теория оптических инструментов, с помощью которой на основе достижений в расчетах оптических систем, разработке теории аберраций и технологии оптического стекла стали успешно решать задачу установления оптимальных условий для получения правильного изображения наблюдаемого объекта, подобного ему по геометрическому виду и по распределению яркости. Именно в этот период немецкий ученый К. Ф. Гаусс, отказавшись от понятия идеальной оптической системы, разработал методику расчета оптических систем с учетом толщины оптических деталей, положенную в основу современных оптических расчетов. Именно в этот период были разработаны и внедрены в производство прогрессивные методы варки оптического стекла с заданными свойствами. В значительной степени быстрому развитию точного приборостроения способствовало создание ряда оптических инструментов, предназначенных для сборки, юстировки и контроля точных приборов в процессе их изготовления и эксплуатации. Новая отрасль — металлография позволила применять при изготовлении приборов металлы, удовлетворяющие определенным механическим (повышенная твердость, незначительный износ), физическим (малый коэффициент расширения, иногда отсут-  [c.360]


Характеристики Л. зависит от её оптич. системы. Л. в виде одиночных линз имеют увеличение до 5— лине)1Ное поле с удовлетворительным качеством изображения для такой Л. не превышает 0,2/. Усложнение оитич. систе.мы Л. улучшает её характеристики и даёт возможность исправлять аберрации. Так, напр., апланатическая лупа Штейпгеля (рис. 3, о), состоящая из двояковыпуклой линзы из крона (см. Оптическое стекло) и двух отрицат. флннтовых менисков, имеет увеличение до С—15х и угл. поле до 20 . Наиболее совершенные Л. иа четырёх линз рис. 3, б) имеют увеличение 10—44 , угл. поле 80—100° и устраняют астигматизм.  [c.615]

Таким образом, естественно разбить параметры оптической системы на две группы в одну нз них входят оптические силы ф(, и высоты й,, ко второй относятся лараметры, oпpeдeляюш e форму линз, например углы а, образуемые с осью первым вспомогательным лучом в стекле отдельных линз. ч  [c.241]

В настоящее время область спектра, в которой работают оптические системы, расширилась и представляется желательным знать с точностью, доступной измерениям (н даже несколько больше), значения показателей во всей области, для которой оптическое стекло еще прозрачно, т. е. примернЬ от 360 нм до 2,5 мкм.  [c.611]

Хотя осйовиой расчет оптической системы, а также ее качественных показателей (аберрации, ЧКХ. полихроматической ЧКХ н т. д.) всегда производится на основании данных каталогов (или гос. стандартов) оптического стекла, окончательная подгонка конструктивных элементов выполняется по данным плавок, из которых будет изготовляться система. Однако, как правило, стекольные заводы обычно сообщают значения показателей только для трех-чегырех длин волн соответствующим линиям С, D, f и иногда G. Можно попытаться иа основании этих данных определить значения показателя и для остальных ранее рассмотренных  [c.614]

Оптические и тонко-механические приборы особенно чувствительны к атмосферному воздействию. Это объясняется их сложной конструкцией, разнообразием применяемых материалов и требованием большой точности. Срок пригодности оптических приборов для работы определяется главным образом стабильностью поверхности отдельных частей оптических систем, так как изменения на оптических плоскостях, достигающие размера длины волны света, влияют на световой поток оптической системы. Оптические плоскости подвергаются старению под действием среды. Атмосфера умеренного климатического пояса может вызвать коррозию шлифованной поверхности оптического стекла в виде гигроскопического налета или интерферирующей пятнистости, образования шузырчатости , помутнения и жирового налета [13, 14, 15—19]. Особым видом коррозии оптических плоскостей в теплом влажном климате является микробиологическая коррозия, представляющая собой проблему международного значения в области разработки особых условий поставки оптических приборов для тропиков [1, 3, 5, 7, 9—11, 18, 20, 24, 25]. Решение задачи защиты оптических систем от микробиологического и атмосферного повреждений — обязательное условие для обеспечения непрерывной и долговременной работы оптических систем в теплом и влажном макро- и микроклимате.  [c.183]

Электрическая схема пирометра ОППИР-017 показана на рис. 9.11. Основные элементы и узлы пирометра следующие оптическая система, состоящая из объектива, окуляра, двух диафрагм, красного светофильтра и поглощающего пурпурного стекла — одного или двух в зависимости от диапазонов измерения пирометрическая лампа с дугообразной нитью, включенная в электрическую схему последовательно с регулировочным реостатом. В комплект пирометра входят два соединенных последовательно аккумулятора НКН-10 с общим напряжением от 2 до 2,6 В. Аккумуляторы помещаются в сумке, снабженной ремнем для ношения через плечо.  [c.338]

Эта оптическая система представляет собой устройство, установленное на шлеме оператора, которое формирует изображение экрана катодно-лучевой трубки на бесконечности, не заслоняя поле зрения оператора. Отражательный ГОЭ накладывается на заищт-ное стекло шлема, он повторяет его форму и направляет свет от обычной оптической системы со стороны шлема в глаз оператора. В этой системе главный луч отражается под углом 13° при угле падения 47° по одну сторону от нормали к поверхности. Благодаря оптической силе ГОЭ изображение зрачка системы формируется на зрачке глаза и обеспечивает высокую его яркость. Такую систему нельзя осуш,ествить средствами обычной оптики.  [c.646]

В НИКФИ разработан и изготовлен специальный осветитель для восстановления изобразительных голограмм с лампой ДРШ-250-2, имеющей наименьший размер светящегося тела среди серийных ламп такого типа (0,8 мм) при достаточно высоком световом потоке. Осветитель имеет оптическую схему (рис. 52), состоящую из трехлинзового конденсора из кварцевого стекла (для предупреждения растрескивания от нагрева) и двухлннзового объектива, обеспечивающих малые сферические аберрации. Оптическая система фокусирует изображение светящегося тела источника в плоскость ди-  [c.108]

Достижение наивысших характеристик лазеров, работающих в напряженных режимах накачки, возможно лишь с использованием тех или иных приемов компенсации термооптических искажений, которые часто усложняют оптическую схему и конструкцию излучателя. В практике создания лазеров массового спроса часто предпочитают простоту конструкции достижению предельных характеристик. В этом случае учет термооптических эффектов при выборе элементов резонатора и их взаимного расположения, конструкции системы накачки, режима работы системы охлаждения является особенно необходимым. В настоящей главе рассмотрены лишь те вопросы выбора элементов и конструирования излучателей лазеров на неодимовом стекле и АИГ Nd, которые непосредственно связаны с термооптикой лазеров. Общие же рекомендации по конструированию твердотельных лазеров можно найти в работах [8, 119].  [c.118]

Лазер на неодимовом стекле. Гибридная лазерная система на неодимовом стекле в режиме свободной генерации описана в [38]. В этой работе в качестве ОВФ-зеркала использована схема попутного четырехпучкового взаимодействия с двукратным прохождением сигнального пучка через слой нелинейной среды для исключения ее оптических неоднородностей — как исходных, так и наводимых в процессе накачки и генерации.  [c.211]

Источник света I с помощью конденсора 2 и светофильтра 3 освещает диафрагму 4, помещенную в фокальной плоскости объектива кол 1Иматора 5. Регистрация осуществляется оптической системой (объектив 9 и диафрагма 10) с помощью фотоэлектрической схемы, состоящей из фотоэлектронного умножителя II и усилителя постоянного тока 12 с коэффициентом усиления 3-10 — 7-1(У. Регистрация производится на записывающем устройстве 13 типа УФ-220. Главной частью установки является вакуумирован-ный многолучевой интерферометр 7 с испарителем 8, помещенным в корпус с защитными стеклами 6. Схема конструкции интерферометра приведена на рис. 122.  [c.200]

Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижных или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если же нужно измерять небольшие расстояния, но с большой частотой циклов измерений, то используют фазовые дальномеры с излучателями на полупроводниковых лазерах. В них в качестве источника применяется, как правило, арсенид галлия. Вот характеристики одного из дальномеров, выпускаемых в США [9] выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350X160 мрад, т. е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, в фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от О до 400 м. В печати сообщается, что эти характеристики значительно улучшены в более поздних разработках. Так, например, английская фирма Бритиш Эйркрафт разработала лазерный дальномер с дальностью действия 1500 м и точностью измерения расстояния +30 м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульса 1 МКС. Другой дальномер, разработанный в США, имеет диапазон измерения дальности от 30 до 6400 м. Мощность в импульсе 100 Вт, а частота следования импульсов составляет 1000 Гц [9].  [c.138]


Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора, модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или алюминиево-иттриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить ее быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндр рического корпуса. Осветитель диффузионного типа пред ставляет собой два входящих один в другой цилиндра, между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную ус тойчивую работу или на импульсную с быстрыми запусками. Основные данные унифицированной головки таковы длина волны 1,06 мкм, энергия накачки—25 Дж, энергия выходного импульса — 0,2 Дж, длительность импульса 25 НС, частота следования импульсов 0,33 Гц (в течение 12 с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5-10 Вт. В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из йфокального телескопа для уменьшения расходимости лазерного. луча и фокусирующего объектива для фото приемника. Фотодиоды имеют диаметр активной пло-  [c.140]

Для использования в прицельно-навигационной системе ночного видения Лантирн , предназначенной для истребителя F-16 и штурмовика А-10 разрабатывается голографический индикатор на лобовом стекле. В связи с тем, что габариты кабины самолетов невелики, то с тем чтобы получить большое мгновенное поле зрения индикатора (30° по горизонтали и 18° по вертикали) разработчиками фирмы Маркони Эйвионикс (Англия) было решено разместить коллимирующий элемент ИЛС над приборной доской. Оптическая система включает три раздельных элемента, каждый из которых обладает свойствами дифракционных оптических систем центральный изогнутый элемент выполняет функции коллиматора, два других элемента служат для изменения направления лучей. Разработан метод отображения на одном экране объединенной информации в форме растра и в штриховой форме, что достигается благодаря использованию обратного хода луча при формировании растра с интервалом времени 1,3 мс, в течение которого на ТВ-экране воспроизводится информация в буквенно-цифровой форме и в виде графических данных, формируемых штриховым способом. Для экрана ТВ-трубки индикатора используется узкополосный люминофор, благодаря чему обеспечивается хорошая селективность голографической  [c.153]

Системы наблюдения [10]. К системам наблюдения за процессом ЭЛС относятся смотровые окна, оптические и телевизионные системы, которые используются как раздельно, так и в различных комбинациях. Смотровые окна кроме прочного иллюминаторного стекла содержат рентгеновское стекло, необходимое для защиты обслуживающего персонала от рентгеновского излучения из сварочной ванны. Форма, размеры, конструкция, а также расположение смотровых окон на сварочной камере в каждом конкретном случае зависят от условий удобного наблюдения. При ЭЛС крупногабаритных изделий, когда место сварки удалено от оператора на значительное расстояние, а также при микросварке, визуальное наблюдение через смотровые окна уже недостаточно, поэтому используются оптические устройства, увеличивающие объект наблюдения в 5...50 раз. Указанные устройства могут быть независимыми и встроенными в конструкцию смотрового окна или сварочной пушки. Используются как окулярные оптические устройства, так и системы вывода изображения на экран.  [c.346]

Экспериментальные данные. Анализ экспериментальных результатов по теплопроводности зернистых материалов в зависимости от влагосодержания при комнатных температурах показьшает, что данные опытов различных исследователей могут отличаться в несколько раз даже для одних и тех же материалов [12, 21, 39, 45,59]. Это не может быть объяснено несовершенством методик. измерений, отличием минералогического состава песков, с которыми проводили опыгы, степенью окатанности зерен и т. д. Такие расхождения обусловлены характером распределения влаги в порах зернистой системы, что было установлено экспериментально для четырех значений краевого угла смачивания, образованного на границе трех сред твердого тела, жидкости и газа. Краевой угол измерялся на установке, состоящей из увеличивающей оптической системы, в фокус которой помещалась капля жидкости. Капля находилась на подложке из того же материала, что и частицы зернистой системы (кварцевые стекла). Для обезжиренной подложки краевой угол смачивания был меньше 3° угол измеряли на экране установки, где изображение капли получали при 10-кратном увеличении.  [c.140]

В крышке камеры имеется смотровое плоско-параллельное стекло диаметром 50 и толщиной 1,5 мм. Для фотографирования микроструктуры используется микрофотопасадка (типа МФН-8 для съемки на фотопластинки размером 9x12 см или МФН-12 для съемки на фотопленку шириной 35 мм). Оптическая система микроскопа разделена на две части. Вне рабочей камеры установки находятся тубус, осветительная система и окуляр, жестко соединенные с вертикальным валом 34, проходящим через систему подвижного вакуумного уплотнения. На нижнем конце этого вала внутри рабочей камеры укреплен стальной сектор 35, на котором смонтированы соосный с тубусом объектив 36, а также механизм подвески алмазного индентора.  [c.20]


Смотреть страницы где упоминается термин Стекло и оптические системы : [c.103]    [c.166]    [c.202]    [c.106]    [c.213]    [c.592]    [c.79]    [c.26]   
Смотреть главы в:

Защита от коррозии старения и биоповреждений машин оборудования и сооружений Т2  -> Стекло и оптические системы



ПОИСК



Ось оптическая системы

Стекла системы

Стекло оптическое



© 2025 Mash-xxl.info Реклама на сайте