Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование интегрального v и интегро-дифференциального уравнений

И изгибу призматических стержней и валов переменного диаметра на основе нелинейной теории наследственности с учетом старения материала. Решения задач сводятся к исследованию нелинейных интегральных и интегро-дифференциальных уравнений Вольтерра второго рода. Для решения этих уравнений используется метод малого параметра (этим параметром характеризуется степень нелинейности деформации ползучести), причем приводится доказательство сходимости предложенного метода решения.  [c.191]


Естественное стремление к расширению арсенала методов исследования и расчета привело к формулировке краевых задач теории оболочек в форме интегральных и интегро-дифференциальных уравнений. Работы  [c.240]

Таким образом, безразлично решать ли уравнение с заданными граничными условиями или минимизировать интеграл. До последнего времени математический аппарат, которым мы располагали, был ориентирован скорее на решение дифференциальных задач, нежели на минимизацию функционалов, поэтому в большинстве физических исследований стремились описывать явления в дифференциальной форме, хотя, как правило, анализ использовал энергетические и термодинамические принципы и давал интегральные или даже вариационные представления при рассмотрении задач механики или электромагнетизма.  [c.16]

Во второй главе дано исследование плоских смешанных задач для упругих тел, усиленных прямоугольными накладками. Здесь рассматривается задач-а о передаче нагрузки от полубесконечной накладки к упругой полуплоскости и плоскости. Нри этом модуль упругости накладки по ее длине изменяется по произвольному закону. В случае однородной накладки при помощи одного интегрального соотношения и аппарата полиномов Чебышева — Эрмита разрешающее интегро-дифференциальное уравнение задачи сведено к дискретному уравнению Винера — Хопфа довольно простой структуры. Таким путем удается получить принципиально повое замкнутое решение задачи о полубесконечной накладке. Далее излагается решение задачи о контактном взаимодействии Стрингера конечной длины и переменной жесткости с упругой полуплоскостью или плоскостью, описываемой интег-ро-дифференциальным уравнением Прандтля при определенных граничных условиях. На основе аппарата полиномов Чебышева это уравнение сведено к вполне или квазивполне регулярной бесконечной системе. Здесь же обсуждены многие частные случаи и произведен их численный анализ. Эта же задача исследуется в случае двух одинаковых стрингеров или периодической системы стрингеров. Дано построение решений задачи о взаимодействии стрингера конечной длины с полуплоскостью, когда концентрация напряжений на концах участка контакта отсутствует. Излагаются другие методы решения задачи о взаимодействии накладки конечной длины с полуплоскостью. Именно, используются асимптотические методы и метод специальных ортонормировап-  [c.11]

В связи с этим весьма перспективны М оказывается исследование процессов радиационного теплообмена с помощью метода электрического моделирования [Л. 89, 147, 148, 174—176, 384, 378, 385], Метод электромоделирования, основанный на математической аналогии уравнений, нашел также широкое применение при решении различных дифференциальных уравнений теории теплопроводности, диффузии и других аналогичных уравнений математической физики [Л, 178, 180]. Были также предложены различные электрические схемы и для решения систем линейных алгебраичеоких уравнений [Л. 177, 178, 180], а также интегральных и интегро-диф-ференциальных уравнений [Л. 179].  [c.281]


В рамках классической теории пограничного слоя [Prandtl L., 1904] задача об асимптотическом состоянии вязкого течения около твердого тела при больших числах Рейнольдса приводит к исследованию областей внешнего невязкого потока и пограничного слоя. Пограничный слой описывается системой уравнений параболического типа, а внешний поток при сверхзвуковых скоростях — системой гиперболического типа. Решения краевых задач для таких систем обладают тем свойством, что распределение искомых функций в некоторой области пространства определяется краевыми условиями на границе, лежащей вверх по потоку от этой области. Такая ситуация имеет место, например, при обтекании тонкого тела потоком с умеренной сверхзвуковой скоростью или в случае гиперзвукового обтекания, если только взаимодействие пограничного слоя с внешним потоком является слабым. Однако если краевые условия заранее неизвестны и подлежат определению при совместном решении задач для обеих областей, то ситуация будет иной. Это относится, в частности, к течению со свободным взаимодействием в области, расположенной перед точкой отрыва потока [Нейланд В. Я., 1969, а глава 1] или перед донным срезом тела [Матвеева Н.С., Нейланд В.Я., 1967 глава 3], а также к гиперзвуковому обтеканию пластинки конечной длины [Нейланд В. Я., 1970] и течению около треугольного крыла при сильном взаимодействии [Козлова И.Г., Михайлов В.В, 1970]. В таких задачах внешнее течение, а значит, и давление в пограничном слое, определяется распределением толщины вытеснения пограничного слоя, которое выражается интегральным образом через искомые функции этого слоя. Следствием интегро-дифференциального характера задачи является то, что возмущения, задаваемые в плоскости симметрии треугольного крыла, могут распространяться по потоку вплоть до его передних кромок.  [c.187]

К исследованию уравнения (64) мы обратимся ниже, а сейчас рассмотрим решение уравнения (65). Нахождение решения тамого интегрально-дифференциального уравнения весьма облегчается тем обстоятельством, что входящий в последний член интеграл является неизвестцым пострянццм числом,  [c.181]

В работе Хантера [71] решена двумерная задача о качении жесткого цилиндра с постоянной скоростью по вязкоупругому полупространству, причем рассмотрен случай, когда можно пренебречь инерционными силами. Исследование выполнено в рамках линейной теории, деформации считаются малыми, и граничные условия на поверхности относятся к недеформированному состоянию среды. Подход, примененный в работе, заключался в представлений нормальной составляющей поверхностного смещения в виде интеграла от существующего решения задачи о движении распределенной линейной нагрузки, что привело к сингулярному интегральному уравнению отцосительно искомой функции поверхностного давления (вязкоупругий аналог формулы Буссинеска). Решение задачи осуществлялось путем эквивалентного преобразования интегрального уравнения в уравнение с обычным логарифмическим ядром относительно дифференциального оператора давления. Замкнутый вид решения был получен для материала, физические свойства которого описываются одной функцией ползучести и одним временем ретордации. Однако при обобщении результатов этого исследования и распространении их на более общий случай вязкоупругого тела, у которого ползучесть характеризуется конечным числом времен релаксации, метод при-  [c.401]


Смотреть страницы где упоминается термин Исследование интегрального v и интегро-дифференциального уравнений : [c.7]    [c.252]    [c.83]   
Смотреть главы в:

Теория диффракции и метод факторизации  -> Исследование интегрального v и интегро-дифференциального уравнений



ПОИСК



Интеграл уравнений

Интегро-дифференциальное

Исследование интегралов

Исследование интегрального уравнения

Уравнения интегральные



© 2025 Mash-xxl.info Реклама на сайте