Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Электрическая поляризация и диэлектрические потери

ЭЛЕКТРИЧЕСКАЯ ПОЛЯРИЗАЦИЯ И ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ  [c.62]

Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]


Электрические свойства стекла характеризуют его как диэлектрик, в котором могут происходить диэлектрическая поляризация и диэлектрические потери, обусловленные релаксацией ионов в стекле.  [c.455]

Эти свойства стекла характеризуют его как диэлектрик, в котором могут происходить диэлектрическая поляризация и диэлектрические потери, обусловленные релаксацией ионов. Электрические свойства стекол изменяются в широких пределах в зависимости от их химического состава (природы), метода термической обработки, состояния поверхности и температуры, в особенности при переходе стекол от хрупкого состояния к жидкому (расплаву) в интервале температур Tg — (рис. П. 4).  [c.172]

Ранее — в гл. 1—3 — рассматривались различные явления, происходящие в диэлектриках под действием электрического поля электропроводность, поляризация и диэлектрические потери. Чем выше приложенное к изоляции электрическое напряжение, тем больше ток утечки, тем больше емкостный ток (в случае работы изоляции под переменным напряжением) и заряд образуемой изоляцией емкости, тем больше рассеяние энергии в изоляции но во всем предыдущем изложении предполагалось что при повышении приложенного к диэлектрику напряжения в нем не происходит резких и необратимых изменений и он сохраняет свойства электроизоляционного материала.  [c.203]

Как уже отмечалось, диэлектрические материалы обладают высокими удельными сопротивлениями р и в них возможно наличие электростатических полей. Весьма важно для диэлектриков явление поляризации, с рассмотрения которого (см. гл. 15) и начинается третья часть книги. Большое значение для радиоэлектроники имеют также электропроводность диэлектриков (гл. 16) и диэлектрические потери (см. гл. 17). При воздействии на диэлектрик высокого напряжения может произойти пробой. Вопросы пробоя (см. гл. 18) очень важны для изучения надежности как диэлектриков, так и всей радиоэлектронной аппаратуры в целом. Помимо электрических свойств диэлектрических материалов в ряде случаев определяющее значение имеют и общие физико-химические свойства (см. гл. 19) — механическая прочность, нагревостойкость, влагостойкость, химостойкость и т. п. Важнейшие современные электроизоляционные материалы рассмотрены в гл. 20 активные диэлектрики — в четвертой части книги.  [c.108]

Следовательно, диэлектрические потери на поляризацию максимальны, когда период изменения электрического поля сравним со временем установления поляризации т. Если частота поля ш>1/т, поляризация не успевает следовать за изменением поля, поляризованность и диэлектрическая проницаемость станут ниже низкочастотных. В области частот а-Ит наблюдается изменение диэлектрической проницаемости с увеличением частоты, называемое диэлектрической дисперсией.  [c.109]


Большинство диэлектриков немагнитно, т. е. р = р, = 1. Если, однако, потери от тока проводимости и электрической поляризации соизмеримы, можно первую составляющую также учесть введением комплексной диэлектрической проницаемости. В этом случае первое уравнение (1-10) примет вид  [c.11]

На переменном напряжении /абс Имеет место, если время релаксации процесса медленной поляризации меньше или соизмеримо с полупериодом приложенного напряжения (т < Т/2). В этом случае мощность, рассеиваемая в диэлектрике под воздействием на него электрического поля — диэлектрические потери, обусловливаемые токами /(К и /абс. наблюдаются в течение всего времени приложения напряжения.  [c.159]

Диэлектрические потери в твердых диэлектриках. В неполярных твердых диэлектриках диэлектрические потери вызваны электропроводностью, а в полярных — электропроводностью и дипольной поляризацией. Выше (см. 5.3) отмечалось, что в твердых диэлектриках дипольная поляризация представляет собой деформацию звеньев, сегментов или ориентацию полярных групп молекул в электрическом поле. Изменение tg б от температуры и частоты для твердых неполярных и полярных диэлектриков такие же, как и для жидких (рис. 5.21—5.23).  [c.164]

Диэлектрическими потерями называют электрическую мощность, рассеиваемую в изоляции или образце диэлектрика в электрическом поле и превращаемую в тепло. Потери происходят вследствие 1) сквозной проводимости (утечки электроэнергии), 2) ионизации газовых включений (потери на ионизацию), 3) явления последействия в диэлектрике, при замедленной поляризации (потери на преодоление внутреннего поля, созданного за предыдущий полупериод действия внешнего поля). Явление последействия , т. е. запаздывания поляризации, зависит от времени релаксации полярных молекул и времени переброса попов в тепловом движении и является основой диэлектрических потерь.  [c.21]

Ориентация молекул происходит без трения, то диэлектрические потери будут также малы. Лишь при средних значениях вязкости, когда поворот и ориентация диполей становятся возможными, но совершаются с преодолением трения молекул и нагревом материала, диэлектрические потери могут быть значительны и достигают максимальной величины. Прн увеличении частоты этот температурный максимум сдвигается вправо, в сторону более высоких температур, снижаясь по своему значению. В частотной зависимости полярные диэлектрики также имеют максимум tg б от частоты, определяемый временем релаксации при поляризации дипольных молекул в переменном электрическом поле возрастающей частоты.  [c.25]

О явлениях, обусловленных поляризацией диэлектрика, можно судить по значению диэлектрической проницаемости, а также угла диэлектрических потерь, если поляризация диэлектрика сопровождается рассеянием энергии, вызывающим нагрев диэлектрика. В нагреве технического диэлектрика могут участвовать содержащиеся в нем немногочисленные свободные заряды, обусловливающие возникновение под воздействием электрического напряжения малого сквозного тока, проходящего через толщу диэлектрика и по его поверхности. Наличием сквозного тока объясняется явление электропроводности технического диэлектрика, численно характеризуемой значениями удельной объемной электрической проводимости и удель-  [c.16]

Диэлектрические потери являются частью электрической энергии, которая рассеивается и превращается в тепло при воздействии на материал электрического поля. Физическая природа потерь зависит от структуры твердого диэлектрика или от вида возникающей поляризации.  [c.100]

Тангенс угла диэлектрических потерь tg б — отношение суммы активных составляющих тока к сумме его реактивных составляющих в реальном диэлектрике (угол 5 — разность фаз между векторами поляризации электрических зарядов и напряженности электрического поля).  [c.147]


Основные характеристики диэлектрических материалов. Для диэлектрических материалов наибольшее практическое значение среди электрических свойств и характеристик имеют поляризация, диэлектрические потери, пробой и электрическая прочность.  [c.92]

Произведение tg называют коэффициентом диэлектрических потерь. В зависимости от значения tg 6 диэлектрики подразделяют на низкочастотные (tg = 0,1...0,001) и высокочастотные (tg < 0,001). К основным источникам потерь диэлектрика относятся его поляризация и электрическая проводимость, ионизация газов в имеющихся порах и неоднородность структуры из-за примесей и включений.  [c.602]

Диэлектрические потери, характеризующие превращение части электрической энергии в тепловую, являются важным электрофизическим параметром диэлектрика. Величина этих потерь, а также зависимость их от частоты и температуры свидетельствуют о тех или иных особенностях механизма поляризации. Диэлектрические потери обычно в значительной степени изменяются при введении в диэлектрик различного рода примесей. В твердых диэлектриках в зависимости от концентрации примесей или структурных дефектов величина диэлектрических потерь может изменяться в десятки и сотни раз, в то время как изменение величины  [c.73]

Механизмы диэлектрических потерь, возникающих в переменном электрическом поле, могут быть конкретизированы лишь при изучении динамических свойств электрического отклика (поляризации и электропроводности). При этом необходимо учитывать кинетические свойства молекул и атомов диэлектрика.  [c.76]

Диэлектрические потери в жидких диэлектриках обусловлены токами проводимости и явлениями поляризации. Носителями зарядов % технических жидких диэлектриках могут быть ионы, образующиеся вследствие диссоциации молекул данной жидкости или молекул примесей, а также более крупные коллоидные частицы, которые могут упорядоченно двигаться в электрическом поле.  [c.65]

Диэлектрические потери. Поляризация диэлектриков сопровождается превращением части электрической энергии в теплоту вследствие трения, возникающего между макромолекулами, сегментами и объемными заместителями в цепи. Диэлектрические потери представляют собой ту часть энергии электрического поля, которая рассеивается в диэлектрике в виде теплоты. Потери, связанные с поляризацией, возникают в диэлектрике при приложении переменного напряжения, поскольку при этом диполи ориентируются многократно (два раза за каждый период колебания электрического поля), тогда как при постоянном напряжении ориентация в направлении поля происходит только один раз после приложения напряжения.  [c.10]

Ориентация диполей в электрическом поле происходит во времени, поэтому поляризация отстает от напряженности электрического поля. Это оказывает влияние на угол сдвига фаз между напряжением и током и соответственно на угол (б) в векторной диаграмме или его тангенс (численно равный отношению активной и реактивной составляющей тока). Так как активная составляющая характеризует тепловые потери, то тангенс угла диэлектрических потерь 1дб принят в качестве показателя диэлектрика. Чем tgб больше, тем при прочих равных условиях больше диэлектрические потери. Для работы при высоких частотах должны применяться материалы с малыми диэлектрическими потерями.  [c.10]

Диэлектрическими потерями называют энергию, которая выделяется в диэлектрике при воздействии на него переменного электрического поля. При приложении к диэлектрику постоянного напряжения диэлектрические потери определяются токами сквозной проводимости, которые тем меньше, чем больше сопротивление изоляции. При переменном напряжении возникают дополнительные потери за счет активной составляющей токов абсорбции, которые вызваны дипольной и объемно-зарядной поляризацией.  [c.42]

Следует подчеркнуть, что электрическое поле нельзя считать фактором, вызывающим вращение полярных молекул [Л. 2-2]. Энергия диполя в жидкости при напряженностях, не превышающих пробивную, недостаточна для того, чтобы диполь мог совершать колебания при периодическом изменении поля. В то же время энергия теплового движения достаточна для обеспечения вращения диполя в жидкости. В связи с этим постоянная времени установления поляризации (время релаксации) зависит от энергии теплового движения. При тех частотах и температурах, когда время установления поляризации мало по сравнению с периодом приложенного напряжения, диэлектрические потери, связанные с поляри нацией, весьма малы.  [c.34]

В технических электроязоляционных материалах, помимо потерь от сквозной электропроводности и потерь от замедленной поляризации, возникают диэлектрические потери, которые сильно влияют на электрические свойства диэлектриков. Эти потери вызываются наличием изолированных друг от друга посторонних проводящих или гюлуироводящих включений углерода, оксидов железа они значительны даже при малом содержании таких примесей в электроизоляционном материале.  [c.45]

В перемсзнном электрическом поле П. д. развивается так же, как и в постоянном поле, до тех пор, пока частота поля со ниже, чем собственная частота колебаний упруго связанных частиц (о или частота р( -лаксацип слабо связанных частиц (o = 1/т. При частотах, близких к (0(, или со, , наблюдается зависимость 8 от со и диэлектрические потери [1—6, 8, Я, 14, 15]. В случае упругой поляризации поведение диэлектриков в области частот со сОд, в области т. и. дисперсии и резонансной абсорбции, может быть описано следующей общей ф-лой [15]  [c.146]


Если время установления поляризации т значительно меньше периода изменения электрического поля 1/f и Р успевает следовать за Е, то энергия на поляризацию за период не затрачивается работа, совершаемая при подаче электрического поля, полностью отдается диэлектриком при снятии поля, и PdE = u. В случае, когда т сравнимо с 1/f, поляризация не успевает полностью установиться за период изменения поля, поляризованность Р отстает по фазе от напряженности Е, и 0 (рис.4.15). Таким образом, на поляризацию затрачивается энергия электрического поля, переходящая в диэлектрические потери. Наконец, при т>1// поляризация совершенно не успевает установиться за полупериод изменения электрического поля, меняющего знак, и Р=0, откуда PdE = 0.  [c.109]

При низких температурах вязкость диэлектрика так велика, что диполи заморожены , не ориентируются в электрическом поле и дипольная поляризация не происходит. Проводимость диэлектрика при низких температурах мала, а поэтому невелики /ск и вызываемые им диэлектрИческйе потери. Поэтому tg б жидкого полярного диэлектрика при низких температурах имеет небольшое значение (рис. 5.21, а, пунктирная линия). С ростом температуры вязкость диэлектрика уменьи1ается. время релаксации полярных молеку.-i становится меньше и они вовлекаются в процесс поляризации. Ориентация (поворот молекул в поле в результате преодоления межмо-лекулярных сил) происходит с трением . На работу против сил трения затрачивается энергия электрического поля, которая и рассеивается в диэлектрике, активная составляющая /да тока абсорбции /аос увеличивается и tgfi диэлектрика растет (рис. 5.21, а). При температуре вязкость диэлектрика уменьшается до такого значения, что время релаксации И полупериод T 2 - i2f) приложенного напряжения становятся одинаковыми Полярные молекулы в течение одного полупериода поворачиваются на максималь-  [c.162]

При повышении напряженности электрического поля в твердом диэлектрике, так же как в жодком и газообразном возникают ионизационные процессы, связанные с увеличением сквозного тока, высоковольтной поляризацией, ударной ионизацией, диэлектрическими потерями, нагревом диэлектрика. В сильных полях нарушается закон Ома плотность тока растет по экспоненциальному закону в функции напряженности поля напряжение начинает падать, а ток резко возрастает, стремясь к бесконечности — наступает пробой диэлектрика. В случае большой мощности ток расплавляет материал диэлектрика, прожигает  [c.36]

Природа диэлектрических потерь в электроизоляционных материалах различна в зависимости от агрегатного состояния вещества. Диэлектрические потерн могут обусловливаться сквозным током или, как указывалось при рассмотрении явления поляризации, активными составляющими токов смещения. При изучении диэлектрических потерь, непосредственно связанных с поляризацией диэлектрика, можно характеризовать это явление поляризации кривыми, представляющими зависимость электрического заряда на электродах конденсатора с даниы.м диэлектриком от приложенного к конденсатору напряжения (рис. 3-1). При отсутствии потерь, вызываемых явлением поляризации, заряд линейно зависит от напряжения (рис, 3-1, а) и такой диэлектрик называется линейным. Если в линейном диэлектрике наблюдается замедленная поляризация, связанная с потерями энергии, то кривая зависимости заряда от напрял<ения приобретает вид эллипса (рис. 3-1,6). Площадь 31 ого  [c.44]

К диэлектрическим потерям, обусловленным поляризацией, следует отнести также так называемые резонансные потери, проявляющиеся в диэлектриках при высоких частотах. Этот вид потерь ( особой четкостью наблюдается в некоторых газах при строго ои-1)еделенной частоте и выражается в интенсивном поглощении энергии электрического поля.  [c.49]

Э. В. Бурсиан и Н. П. Смирнова[40] отмечают, что с уменьшением толщины образца е уменьшается и зависимость е = / (Е) сглаживается. Существенно, однако, что возрастание е в больших полях имеет место даже для очень тонких пленок, по крайней мере до 1 мк. Однако независимо от величины используемого поля, максимум диэлектрической проницаемости для пленок толщиной менее 10 мк сильно размыт. Обычно на пленочных материалах даже напряжение 0,5 в образует поле до 300 в см, что приводит к поляризации образцов. Пробой наступает в интервале от 4 до 10 в, причем пробойность тем ниже, чем выше дефектность по кислороду. Диэлектрическая проницаемость возрастает с ростом величины зерна, т. е. со временем термообработки. Диэлектрические потери растут с температурой. Лезгинцева [39] утверждает, что присутствие а доменов замедляет процесс поляризации и снижает величину 33. При каждом последующем цикле измерений некоторая часть а доменов совершает необратимые 90-градусные повороты и концентрация их таким образом уменьшается. Об этом можно судить по увеличению пьезомодуля и снижению поля, при котором наблюдается наибольший рост 33. Таким образом, изучение зависимости 33 = / [Е] позволяет установить качественно связь между пьезомодулем и доменной структурой кристалла. Необратимое изменение доменной структуры кристалла в процессе измерений может быть причиной нестабильности электрических и механических свойств. Поэтому использование таких пластинчатых монокристаллов на практике требует их монодоме-низации и исключения всех этих нежелательных явлений.  [c.304]

Количественно они характеризуются величиной тангенса угла диэлектрических потерь tg 5 (угол 5 — разность фаз между векторами поляризации электрических зарядов и напряженности электрического поля). У твердых диэлектриков величины диэлектрических потерь находятся в пределах 2...5- 10 . Наименьщими значениями диэлектрических потерь обладают неионизированные газы, которые все являются диэлектриками.  [c.94]

Уравнение AQ = r mnEmEn характеризует еще один квадратичный по полю эффект — диэлектрические потери (рис. 1.7,г) — необратимый переход электрической энергии в тепловую (традиционное описание потерь дано в 3.2). В переменных электрических полях потери в диэлектрике обусловлены главным образом инерционностью медленных механизмов поляризации, а также потерями на электропроводность. В постоянном поле потери обусловлены только электропроводностью (джоулева теплота). Как поляризационные потери, так и мощность джоулевых потерь пропорциональны квадрату поля.  [c.21]

Особенно важное значение имеет величина ТКе, так как внешняя термостабилизация устройств СВЧ хотя н возможна, но нежелательна. Поэтому кроме высокой е и малого tg б СВЧ-диэлектрики должны обладать высокой термо-ста бильностью (ТК е=10 —10 К). Эти требования для большинства диэлектриков оказываются физически противоречивыми. Получение в одном веществе высокой диэлектрической проницаемости и термостабильности является сложной научно-технической задачей, особенно в СВЧ-диапазоне, где можно использовать только быстрые механизмы поляризации (упругую поляризацию), а с бычный метод управления электрическими свойствами — введение примесей, регулировка концентрацией дефектов — приводит к диэлектрическим потерям.  [c.89]

Изучение электрических свойств линолеумов различных рецептур п казало, что тангенс угла потерь с увеличением частоты тока у них уменьшается. Так, при изменении частоты от 10 до 40-10 гц тангенс угла потерь tg 6 в среднем уменьшается в три раза. При частоте 40 X X 10 гц для всех рецептур он равняется 0,02—0,012. Относительнай диэлектрическая проницаемость г тн мало изменяется с изменением частоты тока. В диапазоне частот от 10 до 40-10 гц %пт = 3-f-4 (рис. 68). С увеличением температуры тангенс угла потерь растет, достигая максимального значения при температуре 155° С и частоте тока 35 10 гц. При уменьшении частоты тока до 20-10 гц макси мальное значение тангенса угла потерь достигается при более высокой температуре, выше 180° С. Характерное изменение положения максимального значения тангенса угла потерь с изменением темпе-р атур и частоты тока свидетельствует о наличии дипольной поляризации и релаксационного характера превращения энергии.  [c.101]


Диэлектрические потери составляют ту часть электрической энергии, которая переходит в тепло в диэлектрике при переменном напряжении. Диэлектрические потери тесно связаны с процессом поляризации, который не протекает мгновенно. С момента наложения электрического поля до наступления стационарного состояния проходит о пределенное время, которое при всех электротехнических частотах весьма мало по сравнению с периодом приложенного напряжения. Процесс установления поляризации, связанной с тепловым движением, протекает сравнительно медленно и зависит от вязкости жидкости. При снятии поля ориентировка молекул нарушается, при этом выделяется тепло. Время, в течение которого ионы и молекулы под действием поля достигают стационарного состояния, определяется временем релаксации. Последнее тем меньше, чем выше температура жидкости, п возрастает с повышением вязкости. Наличие медленно устанавливающейся поляризации в жидком диэлектрике обусловливает некоторый ток при переменном напряжении, состоящий из двух слагающих активной и реактивной, которые независимы рт тока сквозной проводимости. Наличие активного тока  [c.31]

Устройство наиболее распространенного гелий-неонового лазера схематически показано на рис. 9.8. Газоразрядная трубка с внутренним диаметром 1 —10 мм и длиной от нескольких десятков сантиметров до 1,5—3 м имеет торцовые плоскопараллельные стеклянные или кварцевые окна, установленные под углом Брюстера к ее оси. Для линейно поляризованного излучения с электрическим вектором в плоскости падения коэффициент отражения от них равен нулю. Поэтому брюстеровские окна обеспечивают линейную поляризацию излучения лазера и исключают потери энергии при распространении света из активной среды к зеркалам и обратно. Трубка помещена в резонатор, образованный зеркалами с многослойными диэлектрическими покрытиями (см. 5.7). Такие зеркала имеют очень высокий коэффициент отражения в нужном спектральном интервале и почти не поглощают свет. Пропускание зеркала, через которое выводится излучение, выбирается обычно около 1—2%, другого — менее 1%. Особенно удобен резонатор, близкий к конфокальному, так как он вносит малые дифракционные потери и легко поддается юстировке.  [c.454]

Внутренние простые эффекты могут формировать несколько видов измеряемых сигналов механические (изменения объема V, напряжений т, усилий Р или перемещение жидкости А/), тепловые (изменение температуры Т или разности температур АТ), оптические, включая электромагнитные (изменения интенсивности и направления потока энергии Ф, спектра света, угла поворота плоскости поляризации ф и др.), электрические (изменения сопротивления R, емкости С, добротности Qg, тангенса угла диэлектрических потерь tg б или ЭДС, сводящиеся к изменениям напряжения V или тока /), магнитные (изменения индукции В, индуктивности L, добротности и взаимоиндуктнвностн М, сводящиеся к изменениям напряжения, тока или перемещению), радиационные (поглощающая и рассеивающая способности жидкости в отношении проникающих излучений — рентгеновского и радиоактивных естественное или вызванное излучение).  [c.29]


Смотреть страницы где упоминается термин Электрическая поляризация и диэлектрические потери : [c.247]    [c.98]    [c.268]    [c.302]    [c.681]    [c.89]    [c.90]    [c.78]   
Смотреть главы в:

Диэлектрики Основные свойства и применения в электронике  -> Электрическая поляризация и диэлектрические потери



ПОИСК



Диэлектрическая (-йе)

Диэлектрическая поляризация

Диэлектрические потери

Поляризация

Поляризация электрическая

Электрические потери



© 2025 Mash-xxl.info Реклама на сайте