Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытание на растяжение с кручением

ИСПЫТАНИЕ НА РАСТЯЖЕНИЕ С КРУЧЕНИЕМ 115.15]  [c.229]

Рис, 4.9. Зависимость осевого усилия от абсолютного удлинения шпилек М8 при испытании на растяжение с кручением на установках с различной податливостью [21]  [c.188]

Нанокристаллические сплавы. Исследование сверхпластического поведения проводилось для сплавов, поскольку наноструктуры обычно характеризуются низкой стабильностью при повышенных температурах и, фактически, нанокристаллические чистые металлы нестабильны часто даже при комнатной температуре. Наноструктуры в сплавах и интерметаллидах более устойчивы. Такие структуры были получены с использованием ИПД кручением в легированном бором интерметаллидном соединении №зА1 (Ni-3, 5 %А1-7,8 %Сг-0,6 %Zr-0,02 %В) [351] и в алюминиевом сплаве 1420 (А1-5,5 %Mg2,2 %Li-0,12 %Zr) [352, 353]. Этот метод (см. гл. 1) имеет преимущество при получении маленьких дисковых образцов (0 = 12 х 0,5 мм) с наноструктурой. Образцы для механических испытаний на растяжение с длиной рабочей части 1 мм были вырезаны электроискровой резкой из дисков, подверженных ИПД кручением. Испытания на растяжение проводи-  [c.203]


Наибольшее распространение получило измерение твердости вдавливанием. В результате вдавливания с достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации заключается в том, что она протекает в небольшом объеме, окруженном недеформированным металлом. Пластическую деформацию при вдавливании могут испытывать не только пластичные, но и хрупкие металлы (например, серый чугун), которые при обычных механических испытаниях (на растяжение, сжатие, кручение, изгиб) разрушаются хрупко почти без макроскопически заметной пластической деформации. Таким образом, твердость, характеризующая сопротивление пластической деформации, представляет собой механическое свойство металла, отличающееся от других его механических свойств способом  [c.23]

Вернемся теперь к рассмотрению теории, представленной соотношениями (1.97), (1.100), (1.101). Результаты испытаний на растяжение и кручение с последующим кручением в обратном направлении позволили по (1.102) определить функции 1(ёо), А. ёо), В(ё,о), а по ним рассчитать р.  [c.32]

С помощью микромеханического метода могут быть изучены механические свойства при статических испытаниях на растяжение, сжатие, кручение, изгиб, срез, релаксацию, ползучесть и длительную прочность, а также свойства при усталостных испытаниях, для чего существует ряд испытательных установок и приборов.  [c.165]

Первый принцип при пользовании обычным промышленным переменным током является наименее совершенным, так как при значительных колебаниях напряжения в питающей сети очень трудно поддерживать постоянное значение сопротивления обмотки печи. Этот способ можно применять преимущественно в тех случаях, когда сравнительно большая точность регулирования (+ 3°) требуется в течение короткого промежутка времени, например при кратковременном испытании на растяжение или кручение с измерением малых деформаций.  [c.22]

Для сложного напряженного состояния подобный метод оценки прочности непригоден. Дело в том, что для одного и того же материала, как показывают опыты, опасное состояние может наступить при различных предельных значениях главных напряжений Ох, Оз и 03 в зависимости от соотношений между ними. Поэтому экспериментально установить предельные величины главных напряжений очень сложно не только из-за трудности постановки опытов, но и вследствие большого объема испытаний. В случае сложного напряженного состояния конструкции рассчитывают на прочность, как правило, на основании теоретических разработок с использованием данных о механических свойствах материалов, получаемых при испытании на растяжение и сжатие (иногда используют также результаты опытов на кручение). Только в отдельных случаях для оценки прочности конструкции или ее элементов прибегают к моде-  [c.195]


В предыдущих главах рассматривались такие случаи нагружения бруса, при которых задача оценки прочности не вызывала затруднений. Достаточно было в его опасной точке вычислить максимальное напряжение и сопоставить с предельным напряжением материала, полученным непосредственно из опыта. Так, при оценке прочности бруса, работающего на растяжение, максимальное расчетное напряжение сравнивалось с предельным напряжением материала, полученным при испытании на растяжение. Для бруса, испытывающего деформацию кручения, максимальное расчетное напряжение сопоставлялось с пределом текучести или прочности материала при кручении, опять-таки полученным опытным путем.  [c.313]

Проводя испытания на растяжение, мы фиксируем свое внимание на зависимости между напряжениями и деформациями и замечаем, что по достижении предела текучести в образце возникают ощутимые остаточные деформации. Таким образом, условием перехода из упругого состояния в пластическое является равенство а = еТт.р- При сжатии получим а = сгт.с- Аналогичным образом можно поступить и в случае чистого сдвига. Испытывая на кручение тонкостенную трубку, нетрудно выявить напряжения в характерных точках  [c.346]

Механические свойства определяются с помощью различных механических испытаний, которым подвергаются тела простейшей формы — образцы, изготовленные из данного материала. Различают испытания на растяжение, сжатие, изгиб, сдвиг, кручение и т. д. Механические испытания проводятся в лабораториях с помощью специальных машин, приборов и приспособлений. Большинство механических характеристик прямо или косвенно можно определить при испытании на растяжение, которое для металлов проводится в соответствии с ГОСТ 1497—61.  [c.135]

Для экспериментального построения поверхности прочности необходимо провести эксперименты на растяжение, сжатие, чистый сдвиг и комбинированное нагружение. Содержательный обзор и экспериментальное сравнение многочисленных методик, предложенных для испытания композитов, в том числе испытаний на растяжение, сжатие, изгиб и кручение стержней с анализом геометрии образца и конфигурации захватов, приведены в работе Лено [29].  [c.462]

Эвтектоидный сплав Zn-22 %Л1 является классическим двухфазным сверхпластическим сплавом, демонстрирующим при оптимальных температурно-скоростных условиях деформации (температура 250°С, скорость деформации 10 с ) удлинения при испытаниях на растяжение свыше 2000% [339]. Обычно сверхпластичность в этом сплаве достигается при размере зерен, лежащем в области от 1 мкм до 5 мкм. С целью исследования влияния наноструктуры на сверхпластическое поведение образцы сплава были подвергнуты двум различным схемам ИПД РКУ-прессованию и деформации кручением.  [c.210]

При выборе способа нагружения существенным с методической точки зрения является использование метода, позво.ляющего осуществлять однородное напряженное и деформированное состояние в исследуемом образце. Наибольшее распространение получили испытания на растяжение — сжатие, а также на кручение тонкостенных трубчатых образцов, когда в последнем случае неоднородностью напряженного состояния по радиусу можно пренебречь.  [c.213]

Рнс. 45. Влияние температуры испытаний на предельную пластичность стали 15 (0,014 % С 0,27 % Si 0,47 % Мп 0,024 % Р 0,005 % S 0,12 % Си 0,007 % Сг) при испытаниях на растяжение (а) и кручение (б) при 4= -10 с-1  [c.78]

Кручение круглых цилиндрических образцов одним из применений является исследование высокопластичных материалов с целью устранения осложнений, вносимых в картину явления и в расшифровку результатов испытаний на растяжение, связанных с образованием шейки, ввиду большой чувствительности материала к дефектам на поверхности и к внутренним микротрещинам.  [c.300]

На рис. 3, б приведена динамическая схема, которой соответствуют машины для испытания на усталость при кручении. На рис. 3, б обозначено j — жесткость, образца на кручение С2 — жесткость упругого элемента датчика момента кручения и Уз — моменты инерции маховиков, например 3 и 6 (рис. 3, а) J.J — момент инерции захвата для образца, расположенного на упругом элементе датчика момента. Анализ машин этого типа можно проводить аналогично анализу машин с линейно движущимися элементами, испытывающих растяжение и сжатие, рассмотренных в гл. 3.  [c.140]


Машина СН-4 (рис. 23) предназначена для испытаний полимерных материалов на растяжение (сжатие), кручение и внутреннее давление. Цилиндрический образец (сплошной или трубчатый) И зажимают в захватах 6. Нижний захват неподвижно закреплен на валу, вращающемся вокруг вертикальной оси машины. Привод зала состоит из электродвигателя, пятиступенчатого редуктора 7 (пять диапазонов скоростей) и червячной пары. Скорость вра-щения вала грубо регулируется с помощью редуктора 7 и плавно—реостатом 9, управляемым реверсивным двигателем 10, включенным в схему следящей системы. Верхний захват образца закреплен на динамометре 12, который, в свою очередь, закреплен на подвижной траверсе. 5, перемещающейся вместе с тягами 2 и верхней подвижной траверсой 1 лишь в вертикальном направлении. Осевое усилие и внутреннее давление в образце создаются давлением газа, подаваемого соответственно в рабочую полость сильфона  [c.32]

Для проверки пределов применимости на основе базовых экспериментальных зависимостей необходимо выполнение испытаний при (различных (произвольных) сочетаниях режимов нагрева и нагружения. Наиболее полно требованиям, предъявляемым к испытаниям, соответствуют программные стенды со следящими системами нагружения и нагрева. Разработаны стенды для неизотермических испытаний на растяжение-сжатие усилием 10 Н и циклическое кручение с максимальным моментом 250 Н-м. Точность поддержания регулируемых параметров (нагружение, нагрев) составляет 1% при скорости изменения программируемого параметра не более 100%/мин от диапазона изменения параметра. Частоты циклических нагружений и нагревов 1. .. 0,05 цикл/мин, точность протяжки программы 0,05%. В стендах применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам П5].  [c.108]

Испытание на растяжение с кручением болтов и шпилек на установке ДРП-361Э  [c.204]

На рис. 1 и в табл. 2 приведены схема и характеристики установки ДРП-361Э для испытания на растяжение с кручением шпилек (рис. 2) [7]. В установке осуществлен принцип подгружаемой системы. Нагружение образца производится от электропривода. Испытуемый образец 1 (шпилька) одним резьбовым концом ввинчивается до упора в динамометрический стакан 2, который получает вращательное движение от червячного колеса 3 электропривода. Вращательное движение передается образцу, второй резьбовой конец которого ввертывается в составную гайку 4, жестко закрепленную в подвижном буфере 5 испытательной установки. Между подвижным буфером и основанием установки устанавливается сменный пакет пружин 6 требуемой податливости или жесткий блок. В процессе испытания гайка навертывается на резьбовой конец образца и опускается, благодаря чему подвижной буфер сжимает пакет пружин. На обр азец передается от сжатых лружи1Г осевое усилие и крутящий момент от трения в резьбовой, паре шпилька — гайка. Усилие осадки пружин передается через образец на динамометр 2, на котором наклеены тензодатчики сопротивления 7, регистрирующие величину осевого усилия и крутящего момента. Удлинение образца в процессе испытания измеряется тензометрическим индикатором 8, мерительная ножка которого получает перемещение от стержня, опирающегося на верхний шлифованный торец образца.  [c.204]

Рис. 2. Эскизы шпилек для испытания на растяжение с кручением на установке ДРП-361Э Рис. 2. Эскизы шпилек для испытания на растяжение с кручением на установке ДРП-361Э
Испытание на растяжение с кручением чувствительнее оценивает конст-рукционяую прочность болтов или шпилек, чем, например, испытание на растяжение с перекосом.  [c.205]

Рис. 3. Диаграммы деформации, полученные при испытании на растяжение с кручением шпилек из титанового сплава ВТ14 на установке податливостью Рис. 3. <a href="/info/162434">Диаграммы деформации</a>, полученные при испытании на растяжение с кручением шпилек из <a href="/info/29902">титанового сплава</a> ВТ14 на установке податливостью
Приведенные на рис. 5.5 данные получены при испытании на растяжение и кручение трубчатых образцов, изготовленных методом намотки. Как следует из рисунка, упругие свойства материала существенно зависят от направления ориентации волокон. В общем случае упругие свойства многослойного пластика, который состоит из однонаправленных слоев, раположенных различным образом, можно рассчитать, используя теорию слоистых пластиков [2] и зная упругие свойства отдельных слоев пластика. Кривые на рис. 5.5 рассчитаны с использованием данных об упругих свойствах однонаправленного материала, армированного углеродными волокнами.  [c.183]

СОПРОТИВЛЕНИЕ СРЕЗУ — максимальное касательное напряжение в момент разрушения путем среза. Экспериментально определяется при испытаниях на растяжение, сжатие, кручение и двойной срез. Часто С. с. определяется при кручении сплошного или полого цилипдрич. образца, при этом = - (ЗЛ/д. + 0, где крутящий момент при разру-  [c.181]

Влияние температурно-силовых параметров деформации на аномалии свойств при 7ч=ье-превращении, фазовый состав и тонкую структуру железомарганцевых сплавов подробно представлено в работах [2, 4, 162]. Для исследования авторами указанных работ был выбран сплав Г20С2, так как он обладает наибольшей стабильностью е-фазы. Образцы для испытаний на растяжение и кручение изготавливали из листов промышленного производства. Испытание на кручение позволяло более прецизионно контролировать температуру ( 1°С) и деформацию ( 5-10 %) образца и полностью исключить дилатометрический эффект от фазового превращения из общей деформации сверхпластич-ности. Во всех случаях температура нагрева образца под нагрузкой не превышала 600 °С, так как даже минимальное напряжение при более высокой температуре вызывало ползучесть.  [c.135]


Жесткая испытательная машина, в которой задана история деформирования, а нагрузка является регистрируемой переменной, приводит к появлению прерывистостей, имеющ,их форму, показанную Элам (Elam [1938, 1]) для обычного медленного нагружения алюминиевого сплава (см. рис. 4.119, раздел 4.24). Для (мягкого) нагружения с помогцью мертвой нагрузки, когда задана история нагружения, а деформация — регистрируемая переменная, прерывистости проявляются в форме, которую я иллюстрировал на основании одного из моих собственных экспериментов с алюминием низкой чистоты при испытании на растяжения с постоянной скоростью нагружения (рис. 4.179) или на основании опытов на кручение образцов из того же материала при медленном  [c.279]

Величина запаса упругой энергии в напряженной системе определяет характер изменения нагружающего усилия в процессе разрушения (во времени) при большом запасе упругой энергии (ЗУЭ), релаксация усилия мала, в связи с чем с большей перегрузкой и более лавинно заканчивается процесс разрушения (рис. 4.7 и 4.8). Наблюдаются случаи понижеиия прочности образцов с увеличением ЗУЭ. Так, при испытании шпилек М8 на растяжение с кручением в нагружающем устройстве с различной податливостью, имитирующем условия нагружения шпилек при стягивании деталей, наблюдалось существенное уменьшение максимального осевого усилия, выдерживаемого шпилькой с увеличением податливости нагружения (рис. 4.9). Поэтому  [c.186]

Рис. 1. Схема установки ДРП-361Э для испытания шпилек на растяжение с кручением (обозначения см. в тексте) Рис. 1. Схема установки ДРП-361Э для испытания шпилек на растяжение с кручением (обозначения см. в тексте)
Рис. 150. Результаты испытания трубчатых образцов из стали Х18Н9Т на растяжение с кручением в условиях сложного нагружения [341] Рис. 150. Результаты <a href="/info/670532">испытания трубчатых образцов</a> из стали Х18Н9Т на растяжение с кручением в условиях сложного нагружения [341]
Эффективность ТМО с деформацией кручением оценивали по результатам испытаний на растяжение и кручение, Приведенные на рнс. 2.9 результаты испытаниЛ на растяжение образцов из сталей 45 и 40Х ( деф= = 950°С) показывают, что прирост прочности в этом случае меньше, чем при деформации винтовым протягиванием. По сравнению с контрольными образцами о повышается лишь на 10%, т ля стали 45 и на 8% для стали 40Х.  [c.41]

Для определения прочности при статических HaqjysKax образцы испытывают на растяжение, сжатие, изгиб и кручение. Испытание на растяжение - самый распространенный и экономичный вид испытаний, потому что он дает хорошо воспроизводящиеся характеристики, имеющие четкий физический смысл и воспроизводит условия нагружения металла аппарата, работающего под внутренним давлением. Однородное одноосное напряженное состояние, реализуемое на начальных стадиях испытания, позволяет прямо сравнивать достигнутые напряжения с расчетными напряжениями в конструкциях.  [c.278]

Также технически оправданы испытания валов и осей на плоский изгиб вместо кругового, испытания коленчатых валов, работаюшлх на изгиб с кручением, только на изгиб, замена циклического растяжения болтов испытаниями на плоский изгиб, испытания проушин на изгиб взамен растяжения (проушины разрезались по диаметру на две половины) и т. д. При этих заменах принимали во внимание, что во всех рассмотренных случаях при испытаниях на изгиб воспроизводится фактический характер эксплуатациоиного разрушения. Точное воспроизведение соотношения между напряжениями растяжения и изгиба не является в большинстве случаев решающим при сравнительных испытаниях.  [c.213]

Испытания материалов в состоянии сверхпластичности проводят на универсальных испытательных машинах методом растяжения, сжатия и кручения при различных температурно-скоростных условиях деформаций. Созданы также специальные испытательные машины, которые позволяют совместить скоростные условия испытаний на ползучесть с большими удлинениями при испытаниях материалов в сверхпластичном состоянии [70—72]. Схема одной из подобных установок, названной гравипластометр, представлена на рис. 8.  [c.24]

В Московском ордена Трудового Красного Знамени инженерно-физическом институте (МИФИ) на установке для испытания на термическую усталость исследовали трубчатые образцы при повторно-переменном кручении в условиях чистого сдвига с синхронизацией механического деформационного и термического циклов по экстремальным значениям температуры и деформации сдвига, а также при растяжении и сжатии с частотой 2 цикла/мин в интервале температур 650—250° С [10]. Было установлено, что для равноопасных напряженных состояний отношение амплитуд касательных и нормальных напряжений Ат/Ао = 0,572- 0,585, что соответствует положению энергетической теории прочности, а степенные зависимости долговечности от интенсивности полной и пластической деформации достаточно удовлетворительно согласуются с экспериментальными данными. Кроме того, была показана возможность расчета деталей на термическую усталость при сложнонапряженном состоянии по результатам испытаний на растяжение и сжатие.  [c.37]


Смотреть страницы где упоминается термин Испытание на растяжение с кручением : [c.32]    [c.141]    [c.70]    [c.66]    [c.127]    [c.51]    [c.161]    [c.188]    [c.30]    [c.134]    [c.155]    [c.141]   
Смотреть главы в:

Металловедение и термическая обработка стали Справочник Том1 Изд4  -> Испытание на растяжение с кручением



ПОИСК



Динамические испытания на растяжение, сжатие и кручение

Испытание кручение

Испытания на совместное растяжение и кручение

Кручение испытание на К. — ом. Испытание

Кручение с растяжением

Машина для испытания на совместное растяжение и кручение

Машины для испытания на растяжение, сжатие, изгиб, кручение и срез

Растяжение с кручением, см, кручение

Сорокин, Г. А. Туляков. Установка для испытания металлов i на ползучесть при сложно-напряженном состоянии (растяжение с кручением)



© 2025 Mash-xxl.info Реклама на сайте