Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические свойства стали низколегированной конструкционной

Механические свойства стали низколегированной конструкционной  [c.32]

Механические свойства стали низколегированной конструкционной (в состоянии поставки)  [c.172]

Сталь низколегированная конструкционная (ГОСТ 5058—65) обладает лучшими механическими свойствами, чем сталь углеродистая конструкционная. Низколегированные конструкционные стали содержат не более 2,5% легирующих элементов. Например (в%) до 0,37 углерода, от 0,40 до 1,10 кремния, от 0,30 до 1,80 марганца, до 0,9 хрома, до 1,30 никеля и до 0,80 меди.  [c.136]


Сталь легированная конструкционная (ГОСТ 4543—71). Поковки из конструкционной стали для ряда деталей современных машин должны обладать высокими механическими свойствами прочностью, вязкостью и сопротивлением усталости. Углеродистая качественная конструкционная сталь иногда не удовлетворяет этим требованиям, так как прочность и твердость растут с повышением содержания углерода в стали, но одновременно с этим уменьшается пластичность и вязкость, повышается хрупкость. Поэтому поковки для ответственных деталей изготовляют из легированных сталей, обладающих повышенными механическими свойствами. Марки низколегированных и легированных конструкционных сталей обозначаются по буквенно-цифровой системе. Для маркировки этих сталей принято легирующие элементы обозначать буквами X — хром, Н — никель, Г — марганец, С — кремний, М — молибден, В — вольфрам, Ф — ванадий, К — кобальт, Т — титан, Ю — алюминий. Марганец и кремний являются легирующими, если содержание в стали первого более 1 % и второго — не менее 0,8%.  [c.136]

Сталь низколегированная конструкционная. Марки и общие технические требования. Стандарт содержит марки, химический состав, технические требования (по форме, размерам, допускаемым отклонениям, состоянию поверхности, свариваемости и механическим свойствам), методы испытаний, правила маркировки и упаковки.  [c.485]

Низколегированные стали. Низколегированные конструкционные стали обычно содержат небольшое количество легирующих примесей (Мп, Si, Сг, Си, V и др.) — до 2,5%. Механические свойства этих сталей выше свойств низкоуглеродистой стали.  [c.231]

Кремний вводят в углеродистую сталь в небольших количествах как раскислитель. В малоуглеродистой стали, предназначенной для сварных конструкций, допускается содержание кремния не более 0,22—0,25%. В конструкционных низколегированных сталях содержание кремния достигает 1—1,1%. Кремний улучшает механические свойства стали (прочность и упру-  [c.178]

Изложенное о допускаемых напряжениях справедливо при сварке мало- и среднеуглеродистых сталей, а также ряда конструкционных низколегированных, если механические свойства сваренных соединений из них удовлетворяют требованиям, приведённым в табл. 17,  [c.154]

Механические свойства низколегированной конструкционной стали  [c.34]

Высокопрочный чугун (ВПЧ) — перспективный конструкционный материал, состав которого и технологию изготовления разработал Центральный научно-ис-следовательский институт технологии машиностроения (ЦНИИТмаш). По механическим свойствам высокопрочный чугун может заменить литую углеродистую и низколегированную сталь, а технология изготовления из него отливок проще, чем технология стального литья.  [c.48]


Конструкционные строительные стали и сплавы. Свойства этих сталей и сплавов определяются в основном механическими (предел прочности, относительное удлинение, твердость, ударная вязкость) и технологическими (жидкотекучесть, свариваемость, ковкость и др.) характеристиками. Для конструкционных строительных сталей и сплавов используются углеродистые (0,10...0,20% С) и низколегированные (Si, Мп, Сг и др.) стали (ГОСТ 19281—89 и 19282—72). Эти стали, как правило, обыкновенного качества и поставляются по механическим свойствам.  [c.170]

Наибольшее влияние на свариваемость сталей оказывает углерод. Она ухудшается при увеличении содержания углерода, а также ряда других легирующих элементов. Для изготовления сварных изделий применяют в основном конструкционные низкоуглеродистые, низколегированные и легированные стали. Главными трудностями при сварке легированных сталей являются их склонность к образованию закалочных структур, горячих и холодных трещин, а также ухудшение механических свойств — в первую очередь снижение пластичности в зоне сварки. Чем выше содержание углерода в стали, тем сильнее проявляются эти недостатки и тем труднее обеспечить необходимые свойства сварного соединения.  [c.54]

Механические свойства некоторых низкоуглеродистых низколегированных конструкционных сталей в состоянии поставки  [c.255]

Механические свойства проката из низколегированной конструкционной стали [7]  [c.32]

Механические свойства низколегированной конструкционной стали (ГОСТ 19281-89 (в ред. 1991 г.))  [c.52]

Обширный экспериментальный материал по характеристикам циклической трещиностойкости конструкционных сталей указывает на зависимость параметров С и п от условий нагружения и характеристик механических свойств. Однако, несмотря на широкий диапазон изменения в рамках одного класса сталей, для параметров Сип с определенной степенью вероятности могут быть приняты постоянные значения. При нормальном законе распределения параметра п его средние значения, как показал анализ экспериментальных результатов (рис. 2.32, 2.33), составляют п = 3,04 для низколегированных и п = 3,03 — для малоуглеродистых сталей. Международный институт сварки (МИС) рекомендует [93] при использовании уравнения (2.35) принимать значение п = 3,0 для сталей низкой и средней прочности и п = 3,5 для сварных соединений из этих сталей.  [c.66]

В табл. 8.5. приведены механические свойства рядовых и низколегированных строительных сталей, полученных после контролируемой прокатки, закалки и отпуска. В табл. 8.6. приведены режимы термической обработки ряда конструкционных сталей, обеспечивающих оптимальную штампуемость.  [c.451]

Металлы и сплавы, характеристики механических свойств которых позволяют использовать их до -60 °С. Они являются основными конструкционными материалами холодильного машиностроения. Их используют также для изготовления изделий так называемого северного исполнения. К этой группе относятся качественные углеродистые и низколегированные стали ферритного и перлитного классов с ОЦК решеткой.  [c.595]

Анизотропию прокатных листов низколегированной конструкционной стали иногда не удается обнаружить при статических испытаниях, проведенных только на образцах, вырезанных в направлении прокатки и в перпендикулярном направлении. Лишь относительное сужение, истинное сопротивление разрыву 5 и предел выносливости 0 J , определенный при растяжении-сжатии в условиях симметричного цикла, обнаруживают анизотропию. В ряде случаев, когда в продольном и поперечном направлениях все механические свойства, в том числе и предел выносливости, почти одинаковы, испытание на выносливость образцов, ось которых направлена под углом 45° к этим направлениям, позволяет обнаружить анизотропию.  [c.226]

Хром вводится в конструкционную низколегированную сталь для повышения прочности и прокаливаемости и значительно влияет на многие механические свойства улучшаемых сталей, В стали хром находится в твердом растворе и в виде сложных карбидов типа (Fe, Сг)зС, (Fe, Сг Сз и т. д. В конструкционных низколегированных сталях в карбиды входит лишь небольшая часть общего содержания хрома. Небольшие добавки хрома, по рядка 1—3%, мало влияют на коррозионную стойкость стали.  [c.90]


Химический состав и механические свойства низколегированных конструкционных сталей для металлических конструкций (группа А, ГОСТ 5058—65)  [c.53]

Назначение Диаметр проволоки, мм Тип сердечника Коэффициент наплавки г а-я Механические свойства наплавленного металла Сварка малоуглеродистых сталей в нижнем и наклонном положениях 2.8 Рутиловый 12-13,5 Соответствуют электродам Э-50 ГОСТ 9467-60 Сварка малоуглеродистых и низколегированных конструкционных сталей в нижнем и наклонном положениях с толщиной более 3 мм 3,0 Основной 15—17 Соответствуют электродам Э-50А ГОСТ 9467-60 Сварка малоуглеродистых сталей в нижнем и наклонном положениях 2,2 и 2,5 Рутиловый 12—13,5 Соответствуют электродам Э-50 ГОСТ 9467-60  [c.386]

Особенностью низколегированных сталей в части механических свойств является высокий предел текучести, повышенное отношение предела текучести к пределу прочности по сравнению с обычными углеродистыми конструкционными сталями. Поэтому уменьшается опасность появления остаточной деформации при перегрузке.  [c.53]

В настоящее время основным конструкционным материалом является сталь, которая в зависимости от состава может быть углеродистой, низколегированной и высоколегированной. Основным компонентом, определяющим механические свойства углеродистых и низколегированных сталей, является углерод.  [c.130]

В табл. 1.3 приведены механические свойства и химический состав низколегированной углеродистой прокатной стали, в табл. 1.4— механические свойства некоторых марок легированных конструкционных сталей.  [c.7]

По назначению электроды подразделяют на четыре класса по ГОСТ 9466—60 1) для сварки углеродистых и низколегированных конструкционных сталей 2) для сварки легированных теплоустойчивых сталей 3) для сварки высоколегированных сталей 4) для наплавки поверхностных слоев с особыми свойствами. Электроды для сварки конструкционных сталей Ст.З, сталь 10, сталь 20, сталь 45, сталь ЗОХГС и др. подразделяются на типы Э-42, Э-145 и т. д. в зависимости от механических свойств наплавленного металла. Цифра в обозначении типа электрода обозначает прочность наплавленного металла в килограммах на 1 мм .  [c.450]

Легированными называются стали, содержащие специально введенные элементы. Марганец считается легирующим компонентом при содержании его в стали более 0,7% по нижнему пределу, а кремний свыше 0,4%. Поэтому углеродистые стали марок ВСтЗГпс, 15Г и 20Г (табл. 42) с повышенным соде])жапием марганца соответствуют низколегированным конструкционным сталям. Легирующие элементы, вводимые в сталь, вступая во взаимодействие с Ь елезом и углеродом, изменяют ее свойства. Это повы-нгает механические свойства стали и, в частности, сни/кает порог хладноломкости. В результате появляется возможность снизить массу конструкций.  [c.207]

Приведены экспериментальные результаты исследования характеристик трещиностойкости и механических свойств малоуглеродистых, низколегированных, мартенситно-стареющих сталей и их сварных соединений, алюминиевых сплавов и бороалюминиевого композита, биметаллических композиций при статическом и циклическом нагружениях. Рассмотрены технологии применения нанопорошков химических соединений, свойства и трещиностойкость конструкционной керамики на основе оксида алюминия.  [c.4]

Углеродистые стали марок ВСтЗГпс, ВСт5Гпс, 15Г, 20Г с повышенным содержанием марганца по свариваемости следует отнести к низколегированным конструкционным сталям. Легирующие элементы, вводимые в сталь, образуя с железом, углеродом и другими элементами твердые растворы и химические соединения, изменяют их свойства. Это повышает механические свойства стали и, в частности, снижает ее порог хладноломкости. В результате появляется возможность снизить массу конструкции.  [c.13]

Малоперлитные конструкционные стали в последние голы находят широкое применение в газопроводном строительства. В их производстве возникают проблемы с обеспечением оплошности и регламентируемого комплекса механических свойств. Их связывают с неизбежным присутствием водорода в стали. Известные методы борьбы с наводороживапием жидкой стали чосто оказываются ма.поэффектив-ными из-за вторичного наводороживания при разливке. Экономичным и э<1)фективным в производстве листа из низколегированных сталей показывает замедленное охлаждение.  [c.67]

Нелегированная углеродистая сталь — важнейший конструкционный материал, уже длительное время широко используемый в морских условиях. В последнее время более широкое применение находят низколегированные стали, обладающие повышенной прочностью. В некоторых специальных случаях применяют также другие материалы иа основе л<елеза, например чугун, а также сварочное и технически чистое железо. Выбор сталей в качестве материала для морских конструкций обусловлен такими факторами, как доступность, низкая стоимость, хорошая обрабатываемость, опыт ироектирования, физические и механические свойства.  [c.28]

Например, конструкционные углеродистые и низколегированные марки стали высокой чистоты, Г ыплавленные в электропечах, при укове более 2 (в особенности после термической обработки) изменяют механические свойства незначительно. Даже при больших уковах в стали с низким содержанием серы и фосфора механические свойства в продольном и поперечном направлениях отличаются друг от друга незначительно, а при ковке армко- хелеза анизотропия свойств при уковах выше 1,5 отсутствует.  [c.57]

Во избежание растрескивания как после сварки, так и после закалки очень важно детали немедленно подвергать отпуску или отжигу. Отжиг при низких температурах обеспечивает весьма высокие механические свойства, но в случае работы в агрессивных средах (морской воздух и др.) в деталях может наблюдаться коррозионное растрескивание под напряжением. Полностью нержавеющи.ми свойства.ми сложнолегированные стали не обладают, но их коррозионная стойкость значительно выше, чем стойкость низколегированных конструкционных сталей, и несколько уступает простым 13%-иым хромистым нержавеющим сталям типа 1X13.  [c.131]


На основе поверочных расчетов определяется допустимость принятых конструктивных форм, технологии изготовления и режимов эксплуатации если нормативные требования поверочного расчета не удовлетворяются, то производится изменение принятых решений. Для реализации расчетов по указанным выше предельным состояниям в ведущих научно-исследовательских и конструкторских центрах был осуществлен комплекс работ по изучению сопротивления деформациям и разрушению реакторных конструкционных материалов. При этом для вновь разрабатываемых к применению в реакторах металлов и сплавов (низколегированные тепло-и радиационно-стойкие стали, высоколегированные аустенитные стали для тепловьщеляющих элементов и антикоррозионных наплавок, шпилечные высокопрочные стали) исследовались стандартные характеристики механических свойств, входящие в расчеты прочности по уравнениям (2.3), -пределы текучести Оо,2, прочности, длительной прочности о , и ползучести a f Наряду с этими характе мстиками по данным стандартных испытаний определялись характеристики пластичности (относительное удлинение 5 и сужение ударная вязкость а , предел выносливости i, твердость, модуль упругости Е , коэффициент Пуассона д, а также коэффициент линейного расширения а.  [c.38]

В зависимости от рода получаемого шлака электродные покрытия могут быть разбиты на кислые и основные. Важнейшим моментом, определяющим качество покрытия, является степень его раскислённости или окислительная способность образуемых им шлаков. Даже в условиях весьма эффективной защиты расплавленного металла от вредного внешнего воздействия атмосферного кислорода нераскис-лённые или слабо раскисленные шлаки могут насытить металл шва значительным количеством кислорода за счёт перехода свободных окислов из шлака в металл. Аналогичное явление может иметь место при использовании в покрытии рудных компонентов, которые при нагреве выделяют свободный кислород, например, марганцевая руда. В советской практике для многих марок толстопокрытых электродов применяются главным образом основные рас-кислённые покрытия, особенно при сварке легированных сталей. Для регулирования химического состава металла шва и его механических свойств в советской практике в подавляющем большинстве марок покрытых электродов, применяемых для сварки углеродистых и низколегированных конструкционных сталей, практикуется легирование через покрытие. Для этой цели используются в основном различные ферросплавы, которые одновременно осуществляют и другие функции в электродном покрытии (раскисление, создание мелкозернистости металла шва, повышение устойчивости дуги, улучшение технологических свойств шлака).  [c.297]

Для сооружения и ремонта трубопроводов широко используются углеродистые конструкционные качественные стали марок сталь 10, сталь 20, низколегированная 17Г1С производства России и сталь класса прочности Х70 производства Китая. Они обладают высокой вязкостью, свариваемостью и малой склонностью к старению, что дает возможность получать сварные соединения с высокими механическими свойствами.  [c.12]

Механические свойства металла, наплавленного эле1Сгродами для дуговой сварки углеродистых и низколегированных конструкционных сталей  [c.131]

Существует большая группа сварных изделий — сварной режущий инструмент. В работе [227] изучено влияние ТЦО на структуру и механические свойства сварных швов заготовок инструмента. Для экономии дорогостоящих быстрорежущих сталей режущий инструмент обычно изготавливают, предварительно сваривая заготовки из быстрорежущих сталей, например Р6М5, и конструкционных (углеродистых и низколегированных). Быстрорежущая часть заготовки предназначена для рабочей (режущей) зоны инструмента, конструкционная, например из стали 45,— для хвостовиков сверл, фрез, метчиков и т. д. Сварку сталей производят двумя наиболее распространенными способами трением и электроконтактным оплавлением. Сварной шов в месте соединения быстрорежущих и конструкционных сталей характеризуется большой твердостью (до 63—65 ННСэ), хрупкостью и практически не обрабатывается резанием. Большая твердость шва обусловлена закалкой поверхностных слоев при охлаждении на воздухе от температур оплавления и появлением в его структуре ледебуритных игл — крупных карбидных включений. Значительная хрупкость зоны шва связана с потерей пластичности сталью, перегретой при сварке до оплавления, и с ускоренной кристаллизацией и последующей закалкой. Такая структура неудовлетворительна не только для механической обработки при изготовлении инструмента, но и для окончательной ТО — закалки и соответствующего отпуска. Дело в том, что если производить закалку сварного соединения, в структуре которого имеется ледебурит, то получаемая структура мартенсита с иглами крупных карбидов тоже имеет неудовлетворительные свойства. На практике часто сварные швы не подвергают закалке.  [c.225]

На металлические электроды для ручной дуговой сварки и наплавки в стране действует четыре стандарта. ГОСТ 9466—75 содержит классификацию, размеры, технические требования, правила приемки, методы испытаний, требования к упаковке, маркировке, транспортировке и хранению электродов, гарантии изготовителя и требования безопасности. ГОСТ 9467—75 устанавливает требования к механическим свойствам наплавленного металла и содержанию в нем серы и фосфора, к металлическим покрытым электродам для ручной дуговой сварки углеродистых, низколегированных, легированных конструкционных и легированных теплоустойчивых сталей. Большое разнообразие электродных покрытий не позволило взять их за основу классификации электродов. По указанному стандарту электроды классифицируют по типу, который обозначается буквой Э и цифрами, характеризующими минимально гарантируемое временное сопротивление наплавляемого металла электродами данного типа. Например, тип электродов Э46 и Э50А обозначает, что минимальное временное сопротивление соответственно равно 460 и 500 МПа. Буква А указывает, на то, что электрод данного типа обеспечивает более вы-  [c.57]

Влияние степени деформации или укова на механические свойства прежде всего зависит от методов выплавки стали и качества слитков. Так, для конструкционной углеродистой и низколегированной стали, изготовленной в электропечах (если слитки из этой стали имеют незначительную ликвационную зону), достаточна двукратная степень укова у = 2). Если слитки имеют большую ликвационную зону, то уков 2,5—3 обеспечит только повышение относительного удлинения на 10—15% и несколько меньше ударной вязкости на продольных образцах. На поперечных образцах эти показатели даже снизятся.  [c.260]


Смотреть страницы где упоминается термин Механические свойства стали низколегированной конструкционной : [c.533]    [c.201]    [c.124]    [c.536]    [c.537]    [c.138]    [c.107]    [c.74]   
Смотреть главы в:

Краткий справочник технолога-машиностроителя Изд.2  -> Механические свойства стали низколегированной конструкционной



ПОИСК



Конструкционные стали

Механические низколегированная 404 — Механические свойства

Низколегированные конструкционные

Низколегированные конструкционные стали

Низколегированные стали

Стали конструкционные стали

Стали механические свойства



© 2025 Mash-xxl.info Реклама на сайте