Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Накопление повреждений и предельные состояния

Для оценки прочности и несущей способности элементов конструкций и деталей машин при циклических силовых и температурных эксплуатационных нагрузках необходим анализ их напряженных, деформированных и предельных состояний, закономерностей накопления повреждений и разрушения в процессе эксплуатации (см. гл. 1). Предельные состояния по образованию трещин  [c.252]


Выражение для поврежденности качественно верно отражает кинетику разрушения быстрое разрушение сначала, когда рвутся слабые и перенапряженные связи, и затем замедление разрушения при выравнивании нагрузок на связях. Основным достоинством теории длительной прочности А. А. Ильюшина является то, что она описывает процесс разрушения в условиях сложного напряженного состояния. Однако эта же общность теории осложняет ее экспериментальную проверку и внедрение в инженерную практику. Упрощенный вариант теории А. А. Ильюшина предложил В. В. Москвитин. Теория разрушения, предложенная В. В. Новожиловым, является синтезом теории накопления повреждений и теории хрупкого разрушения. Она базируется на двух основных соотношениях уравнении накопления повреждений и условий разрушения, предполагающих, что разрушение наступает тогда, когда интенсивность пластических деформаций достигает некоторого предельного значения. Этот критерий также применим для случая сложнонапряженного состояния.  [c.61]

В данной главе рассматриваются хрупкое, вязкое и усталостное разрушения поликристаллического материала при кратковременном статическом и малоцикловом нагружениях. Разрушение поликристаллического металла при кратковременном статическом нагружении (т. е. при скорости деформирования I с ) является в большинстве случаев внутризеренным и в зависимости от температуры и характера НДС хрупким или вязким. Феноменологически первый тип разрушения сопровождается низкими затратами энергии в отличие от второго, для которого характерны значительные пластические деформации и, как следствие, высокая энергоемкость. Разрушение конструкционных материалов при малоцикловом нагружении также в основном связано с накоплением внутризеренных повреждений и развитием разрушения по телу зерна. Общим для рассматриваемых типов разрушений является также слабая чувствительность параметров, контролирующих предельное состояние материала, к скорости деформирования и температуре. Указанные общие особенности хрупкого, вязкого и усталостного разрушений послужили основанием для их анализа в одной главе.  [c.50]

Изложенные здесь основные закономерности межзеренного разрушения в условиях длительного статического и циклического нагружений положены в основу рассматриваемой ниже физико-механической модели. Анализ влияния скорости деформирования на критические параметры, контролирующие предельное состояние материала, может быть выполнен исходя из схемы, приведенной на рис. 3.2. Для этого значения критической деформации е/ или долговечности Nf при межзеренном накоплении повреждений, рассчитанные по предлагаемой ниже модели, должны сравниваться с аналогичными параметрами, полученными в предположении внутризеренного характера зарождения макроразрушения по одной из ранее разработанных методик (см. гл. 2).  [c.155]


Методы прогнозирования работоспособности длительно проработавших сварных аппаратов должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. Одним из основных аспектов решения проблем безопасности нефтегазохимических производств является дальнейшее совершенствование методологии оценки остаточного ресурса безопасной работы оборудования, т.е. определения времени наработки оборудования до перехода его в предельное состояние при установленных режимах и условиях эксплуатации.  [c.5]

Круг решаемых задач по оценке ресурса нефтехимического оборудования определяется принципиальной схемой физического старения конструктивных элементов (рис. 6.1). В процессе эксплуатации конструкции в результате постепенного накапливания повреждений в металле происходит снижение ресурса и показателей надежности (R - параметр предельной нагрузки, Q - параметр нагрузки). Процесс накопления повреждений в металле объединяется понятием старение . Интенсивность накопления поврежденности определяется свойствами металла М, напряженным состоянием Н и воздействием рабочей среды С. При этом движу-  [c.357]

Вид предельного состояния, связанного с необратимостью разрушения или нестабильностью пластической деформации, зависит от соотношения энергий, идущих на изменение объема и формы. Основной предпосылкой в теории Г,К. Си является предположение о том, что накопление повреждения в материале можно однозначно связать с величиной энергии, которая рассеивается единицей объема материала. Это позволило выделить пороговые стационарные значения функции плотности энергии деформации.  [c.283]

Процесс циклического нагружения элемента конструкции в условиях эксплуатации сопровождается постепенным накоплением повреждений в материале до некоторого критического уровня, который может быть охарактеризован с привлечением различных методов и средств исследования. Выбор средств определяется применяемыми критериями в оценке самого предельного состояния и его фактической реализацией к рассматриваемому моменту времени, как это было рассмотрено в предыдущей главе. Даже при отсутствии в детали трещины можно с большой достоверностью утверждать, что после длительной наработки в эксплуатации последующее после проверки нагружение может вызвать быстрое зарождение и далее распространение усталостной трещины. Оценка состояния материала с накопленными в нем повреждениями и прогнозирование последующей длительности эксплуатации до появления трещины, установление периодичности контроля за состоянием детали подразумевают использование структурного анализа на базе физики металлов. Это подразумевает обязательное применение методов механики разрушения для оценки длительности роста трещины и обоснования периодичности осмотров на всех стадиях зарождения и распространения трещин. Однако многопараметрический характер внешнего воздействия на любой элемент конструкции делает неизбежным введение в рассмотрение процесса накопления повреждений в конструкционных материалах с позиций синергетики, следовательно, возникает новое представление о процессе распространения трещин. Всю совокупность затрат энергии внешнего воздействия, вызвавших разрушение элемента конструкции, интегрально характеризуют достигнутое на определенной длине трещины предельное состояние, единичная реализация процесса прироста трещины и сформированная в результате этого поверхность разрушения.  [c.79]

Рассматриваемые два вида разрушения относят к нерасчетным случаям нагружения и работы лопаток, поэтому они не могут быть использованы для анализа реализуемой в эксплуатации ситуации с накоплением повреждений при достижении лопатками предельного состояния в расчетных условиях.  [c.623]

В работе [1 1] предложен иной подход для оценки поведения композита при сложном напряженном состоянии, где для исследования задачи совместного действия осевого растяжения и сдвига использована модель разрушения в результате накопления повреждений [2]. Предполагалось, что в силу статистического распределения прочности волокон в материале происходят разрывы отдельных волокон (рис. 2.5). Каждый разрыв вызывает в прилегающем объеме матрицы местную концентрацию касательных напряжений. Основной целью рассматриваемого подхода является определение характера взаимодействия касательных напряжений от внешних нагрузок и локальных касательных напряжений и их совместного влияния на предельные напряжения материала при растяже-  [c.44]


Для случая квазистатического (длительного статического) повреждения используется в качестве предельного состояния равенство односторонне накопленной и разрушающей деформации при простом растяжении [188], причем в первом приближении для пластичных материалов e t) = е,,. ( ) и условие квазистатического разрушения выражается равенством  [c.20]

Предельное состояние при сочетании процессов накопления усталостных и квазистатических (длительных статических) повреждений определяется линейным суммированием этих повреждений [132]  [c.21]

Весь объем полученных по схемам нагружения (рис. 1.2.1, а — г) экспериментальных данных обработан в терминах уравнений (1.2.8) и (1.2.9). Предельное состояние определяется при этом накопленным повреждением (рис. 1.2.2, а, точки 2). Разброс данных укладывается в достаточно узком диапазоне повреждений от 0,7 до 1,4. На рис. 1.2.2, а кроме того показана кинетика накопления повреждений для случаев, когда сопоставимы циклическое и длительное статическое повреждения и когда одно из них превалирует. Разрушение (образование макротрещины) наступает при достижении накопленным (суммарным) повреждением предельной величины.  [c.24]

Степень повреждения на данный период работы материала в опасной точке оценивают относительной величиной а принятого параметра условно принимают, что в исходном состоянии детали <п = 0, а в момент достижения предельного состояния а=1, т. е. степень повреждения может меняться в пределах от О до 1. Учитывая особенности процесса упругопластического деформирования при термоусталостном нагружении, считают [13, 25, 40, 71], что формирование предельного состояния обусловлено накоплением и взаимосвязью усталостных и длительных статических повреждений, оцениваемых либо во временной (как отношение соответственно чисел циклов и времен [71]), либо в деформационной трактовке [40] в обоих случаях суммирование осуществляют на основе принятой гипотезы.  [c.16]

По каждому из трех параметров имеется запас, определяем мый длиной отрезков АВ, АС, ААх (запас по температуре не рассматривают). При заданном и неизменном в эксплуатации значении Ае накопление повреждений происходит с увеличением времени работы, т. е. с увеличением т и Л . Следовательно, предельное состояние определяется положением точки А на поверхности деформирования при перемещении ее вдоль луча ОА (рис. 98,а).  [c.171]

При этом уравнение (1) описывает условие достижения предельного состояния в зоне разрушения на основе линейного суммирования компонент повреждений. В уравнениях (2) и (3) усталостное повреждение за цикл связывается с величиной полной или необратимой деформации (равной ширине петли гистерезиса), а квазистатическое — определяется односторонне накопленной деформацией, при этом суммирование повреждений производится с учетом изменения по циклам и во времени циклических и односторонне накопленных деформаций, а также исчерпания располагаемой пластичности материала.  [c.41]

Определение запасов прочности и долговечности осуществляется на основе количественной оценки перехода к предельным состояниям с ростом уровня термомеханической нагружен-ности или ростом выработанного ресурса по критериям накопленного повреждения или накопленного формоизменения.  [c.35]

Для случая квазистатического (длительного статического) повреждения используется в качестве предельного состояния равенство односторонне накопленной и разрушающей деформаций при простом растяжении [5]  [c.40]

При этом предельное состояние по разрушению определялось накоплением и взаимосвязью усталостного и длительного статического повреждений  [c.94]

При уменьшении длины мембранной зоны образца цр I = г накопления деформации в ней практически не происходит, т. е. доля квазистатических повреждений = 0. В результате и в мембранной зоне, и в зоне концентрации накапливаются усталостные повреждения. Однако, как показывает расчет, доля усталостных повреждений в зоне концентрации больше, чем в мембранной зоне. В результате предельное состояние быстрее достигается в зоне концентрации, где и происходит усталостное разрушение.  [c.132]

При термоциклическом нагружении сферического оболочечного корпуса происходит накопление деформации и возникают значительные квазистатические повреждения в опасной точке конструкции. Доля квазистатических повреждений к моменту достижения предельного состояния может составлять 0,3 (кривые 7 и 2 на рис. 5.5).  [c.253]

Рассмотрим результаты экспериментов, характеризующие влияние скорости деформирования на критические параметры, контролирующие предельное состояние материала, и сопоставим их с механизмами накопления повреждений и разрушения. Основная закономерность, которая наблюдается при различных схемах деформирования в условиях, когда скоростные параметры нагружения влияют на характеристики разрушения, состоит в уменьшении критических значений этих характеристик при снижении эффективной скорости деформирования. Так, при испытании на ползучесть в определенном температурном интервале снижение скорости установившейся ползучести, вызванное уменьшением приложенных напряжений, может приводить к уменьшению деформации ef, соответствующей разрушению образца. В качествее примера на рис. 3.1, а приведены результаты опытов на ползучесть для ферритной стали, содержащей 0,5% Сг, 0,25% Мо, 0,25% V, при 7 = 550°С и напряжении а =150- 350 МПа [342]. При скорости установившейся ползучести порядка 10 3 с деформация до разрушения образца составляет всего несколько процентов.  [c.151]

Кроме предельных состояний, определяемых накоплением повреждения и образованием трещин при повторном пластическом деформировании и выдержках в напряженном и нагретом состоянии, такие состояния могут возникать в результате достижения упругого равновесия в элементах конструкций как следствия образования поля самоуравновешенных остаточных напряжений после первых циклов упругопластического перераспределения напряжений. Такой переход к упругому состоянию и прекращение образования пластических деформаций трактуется как приспособляемость. Условия приспособляемости вытекают по кинематической теореме Койтера [35] из принципа соответствия работ внешних сил и работ, затрачиваемых при образовании пластических деформаций на кинематически допустимом цикле. Эти условия приводятся к неравенству  [c.27]


В интервале чисел циклов от 150 и до порядка 3000 разрушение носит смешанный характер и связано с одновременным накоплением соизмеримых по величине длительных статических и усталостных повреждений. При долговечностях, больших 3000, разрушение носит (для уровня (т = 28 кгс/мм ) усталостный характер и предельное состояние достигается за счет нреобладаюш его накопления циклических повреждений.  [c.19]

При 150 С и V = 1,7-10 Гц интенсивности накопления усталостных и длительных статических повреждений сопостави.мы, а при 190° С и V = 1,5-10 Гц цик.лическпе повре жденпя малы и длительные статические повреждения определяют предельное состояние по условию квазистатического разрушения. В обоих режимах сп.лав разупрочняется.  [c.22]

Один из наиболее трудных и наименее разработанных вопросов механики материалов — прогнозирование типа разрушения (внутризеренного или межзеренного) и условий перехода от внутризеренного, менее опасного разрушения, к межзерен-ному, приводящему к снижению критической деформации и долговечности материала. В настоящей главе предложен подход к анализу типа разрушения в зависимости от условий испытаний. Суть подхода заключается в параллельном анализе накоплений повреждений в теле зерна и по его границам тип разрушения будет определяться тем процессом, который дает меньшие значения параметров предельных состояний материала Nf и е/). Такой анализ может проводиться на основании физико-механических моделей кавитационного внутризеренного или усталостного разрушения, рассмотренных в гл. 2, и модели кавитационного межзеренного разрушения, представленной в данной главе.  [c.187]

Сочетание приведенных выше свойств и особенностей деформирования при термоусталостных испытаниях сплава ЭП-693ВД обусловливает появление трещин циклического разрушения в зонах шейки , что говорит о выраженном влиянии процесса накопления односторонних деформаций и, следовательно, квази-статических повреждений на достижение предельного состояния по условию циклического разрушения. Однако при испытаниях на больших уровнях долговечности с жесткостью нагружения с <" 95 тс/см, когда эффект накопления односторонних деформаций практически отсутствует (см. рис. 1.3.6), можно ожидать возникновения термоусталостной трещины в зоне перехода от рабочей длины к конической части образца, где температура цикла соответствует минимальной пластичности и, следовательно, долговечности материала.  [c.51]

Трактовка условий достижения предельного состояния по разрушению в форме деформационно-кинетического критерия предцояагает интерпретацию экспериментальных данных в виде зависимости суммарного повреждения от числа циклов до появления трещины. При этом для условий термоусталостных испытаний, которые, как было подчеркнуто, являются в общем случае нестационарными и сопровождаются накоплением не только усталостных, но и квазистатических повреждений, выражение результатов в широко используемой в настоящее время форме, когда производится построение зависимости циклической деформации (суммарной или необратимой) от долговечности, является недостаточно корректным. На рис. 1.3.7 представлены данные термоуста-лостных испытаний. Видно, что при использовании деформаций, получаемых в первом цикле нагружения, и деформаций, соответствующих 50%-ной долговечности образца, наблюдается кажущееся снижение сопротивления термоусталостному нагружению в два-три раза по сравнению с кривой усталости материала. Указанное является следствием неучета влияния в термоусталостных испытаниях квазистатических повреждений, роль которых возрастает по мере снижения долговечности образцов.  [c.55]

Для расчета накопленного повреждения В по результатам двухступенчатого блочного нагружения с использованием зависимости (1.1.12) необходима прежде всего запись поциклового изменения деформаций на каждом уровне блока нагружения вплоть до достижения образцом предельного состояния по моменту образования макротрещины. Дальнейшая обработка каждой из двух полученных таким образом кривых изменения деформаций в процессе испытания для каждого образца (по числу уровней в блоке) осуществляется по методике, изложенной выше для случая мягкого стационарного нагружения. Суммарное накопленное повреждение, таким образом, учитывает вклад каждой ступени блока нагружения и в соответствии с зависимостью (1.1.12) определяется с учетом усталостных и квазистатических повреждений.  [c.61]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]

Отмеченные закономерности определяют степень одностороннего накопления необратимой циклической деформации сжатия, характер которой для корсетного сплошного образца показан на рис. 22 [29]. Сопоставление кривых для разных режимов показывает, что накопление деформации сжатия ( бочка ) за счет выравнивания температурного поля (см. рис. 21) может быть существенным. Например, при увеличении времени цикла в 4 раза накопление пластической деформации к 20-му циклу увеличивается в 30 раз (режимы I и V). В связи с этим можно ожидать, что предельное состояние при неизотермическом нагружении с длительными выдержками в значительной степени будет определяться величиной длительного статического повреждения. Следует указать, что одностороннее накопление ква-зистатической сжимающей деформации было обнаруЖ1ено и в. тонкостенных корсетном и гладком образцах [35].  [c.40]


В тех случаях, когда характер термонагружения обусловливает одновременное накопление циклического и статического повреждения, необходимо учитывать оба вида повреждений, суммируя их определенным образом. С. В. Серенсен и Д. Вуд впервые указали на нецелесообразность применения линейного закона суммирования относительных долей повреждения во временном выражении для случая изотермического нагружения. Для неизотермического термоциклического нагружения оказывается справедливым степенной закон суммирования относительных долей повреждения в виде а - -а = I, при этом коэффициенты а и р не зависят от уровня нагрузки. Кривые предельного состояния в координатах а,—имеют вид гипербол, показывающих весьма существенное взаимное влияние одного вида нагружения на другой. Расчетные уравнения, построенные на основе степенного суммирования относительных долей повреждения, позволяют определить долговечность при нагружении детали термическими циклами произвольной формы. Приведенные в гл. 7 примеры расчета иллюстрируют это обстоятельство.  [c.192]

Условие локального разрушения. Во многих теориях процесса накопления рассеянных микродефектов условием локального разрушения является достижение параметром степени поврежденности, принятым в теории, предельного значения, определяемого. в макроопыте. В этом смысле такие теории по своей структуре напоминают феноменологические механические теории предельного состояния в локальной области. Однако в последних сопоставляются не значения параметра разрушения, найденного теоретически для сложного напряженного состояния, и предельное значение этого параметра, полученное экспериментально (макроопыт) для линейно напряженного образца, а теоретически находится значение фактора, ответственного за наступление предельного состояния в локальной области.  [c.598]

Предельное состояние при повторном приложении нагрузок можно охарактеризовать мерой накопления усталостных и квазистатичес-ких повреждений, причем усталостные повреждения обусловлены действием циклических деформаций кваэистатические — односторонне накопленных деформаций Характер изменения деформаций конструктивных элементов при повторном нагружении существенно зависит от режима приложения нагрузок, напряженного состояния и свойств материалов. Диаграммы циклического деформирования при различных циклах нагружения отражают различный характер изменения односторохше накопленных и циклических упругопластических деформаций (рис. 1.1).  [c.4]

Появление знакопеременных напряжений в зоне концентрации сопровождается возникновением циклических деформаций (рис. 1.7, в), превышающих деформации в мембранной зоне (см. рис. 1.7, а и б). Поскольку для зон концентрации напряженний характерны значительные градиенты напряжений и деформаций, а объем упругопластической зоны сравнительно мал, накопление деформаций статической и циклической ползучести ограничено влиянием прилегающих объемов материала модельного элемента, находящихся в упругом состоянии. В этих условиях в зоне концентрации достижение предельного состояния по критериям прочности определяется долей усталостного повреждения, близкой к единице доля квазистатического повреждения вследствие незначительных перераспределения и накопления деформаций, появляющихся только в начальных циклах деформирования, пренебрежимо мала (см. рис. 1.7, в). В этом случае усталостная трещина образуется в переходной от фланца к оболочке зоне, в которой возникают максимальные циклические деформации, обусловленные эффектом концентрации. При этом отсутствуют односторонне накопленные деформации, и трещина распространяется в кольцевом направлении.  [c.11]

Расчетная оценка малоцикловой долговечносга. На базе полученной информации о циклических деформаций в опасной точке детали и кривых малоцикловой усталости оценим долговечность телескопического кольца, используя деформационно- кинетический критерий прочности при постоянных температурах [см. соотношение (1.3)]. Разрушения детали (см. рис. 3.2) в условиях эксплуатации, а также модели при стендовых испытаниях в условиях высокотемпературного малоциклового нагружения имеют преимущественно усталостный характер (наличие сетки мелких трещин, инициирующих магистральное разрушение, без признаков накопления односторонних деформаций), поэтому расчетное критериальное уравнение, описьшающее предельное состояние материала, обусловленное накоплением усталостных повреждений, принимаем в виде  [c.144]


Смотреть страницы где упоминается термин Накопление повреждений и предельные состояния : [c.104]    [c.173]    [c.17]    [c.23]    [c.4]    [c.42]    [c.217]    [c.10]    [c.154]    [c.37]    [c.65]    [c.346]   
Смотреть главы в:

Уравнение состояния при малоцикловом нагружении  -> Накопление повреждений и предельные состояния



ПОИСК



Накопление

Накопление повреждений

Повреждени

Повреждение

Повреждение предельное

Предельное состояние



© 2025 Mash-xxl.info Реклама на сайте