Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устройства Расход жидкости

Наличие загрязнений в жидкости — крайне нежелательное явление в системах, требующих точной регулировки очень малых потоков. Практика отмечает, что при малых открытиях распределительных устройств расход жидкости после некоторого времени начинает уменьшаться из-за закупорки щели и после нескольких минут может полностью прекратиться. Это происходит потому, что распределительное устройство действует как фильтр, удерживая загрязнения. Наличие загрязнителей в жидкости способствует образованию стойкой пены, которая может служить причиной неполадок.  [c.326]


Задача Х1П—40, Для регулирования расхода жидкости, поступающей в гидроцилиндр, применяется золотниковое управляющее устройство.  [c.406]

Сопоставим секундные расходы жидкости, вытекающей через эти устройства, и ее кинетическую энергию.  [c.106]

Регуляторы с дроссельными гидроусилителями отличаются высокой точностью, чувствительностью и малой инерционностью. Недостатком их является большой расход жидкости через сопло и, следовательно, низкая экономичность. На принципе действия этого регулятора работают устройства, уравновешивающие осевые усилия в роторах центробежных насосов.  [c.274]

При косвенных измерениях результат находят на основании известной зависимости между определяемой величиной и некоторыми другими величинами, которые, в свою очередь, находят с помощью прямых, а иногда и косвенных, совместных или совокупных измерений. Примером косвенного измерения является определение расхода жидкости с помощью сужающего устройства.  [c.134]

Для измерения малых расходов жидкостей и газов могут быть использованы различные средства, среди которых наибольшее распространение получили расходомеры постоянного перепада давления, тахометрические счетчики-расходомеры, калориметрические расходомеры, а также нестандартные суживающие устройства.  [c.211]

Проблемами, возникающими в связи с кавитацией, являются изменение закономерностей течения в связи с нарушением сплошности, а также кавитационные разрушения материала твердых стенок при схлопывании пузырей вблизи границ течения. Некоторые гидродинамические устройства (например, некоторые типы измерителей расхода жидкости) перестают выполнять свое назначение при появлении кавитации. Кавитационные разрушения лопастей гидравлических турбин, насосов, гребных винтов представляют собой одну из важных технических проблем.  [c.23]

Параллельным соединением трубопроводов называют такое, при котором определенный расход жидкости, подходя к точке разветвления, распределяется по ответвлениям, а затем снова сливается в точке схода этих трубопроводов и становится равным первоначальному (рис. 5.3, б). Устройством -параллельных линий достигают бесперебойности, надежности работы системы, повышения ее пропускной способности на отдельном участке магистрали или снижения требуемого напора при постоянном расходе.  [c.57]

К устройству насадков прибегают для увеличения пропускной способности отверстия или для увеличения или уменьшения кинетической энергии вытекающей струи. Возрастание расхода жидкости при истечении из насадка по сравнению с обычным отверстием того же диаметра в тонкой стенке объясняется возникновением вакуума в начале насадка, что вызывает увеличение действующего напора в сжатом сечении, образующимся непосредственно после входа жидкости в насадок в результате криволинейных траекторий движения частиц жидкости на подходе к насадку.  [c.79]


Обратимся сначала к теории водомера Вентури, представляющего собой устройство, при помощи которого можно производить измерение расхода жидкости в трубах (рис. 3.16).  [c.90]

Поляризованные молекулы, накладываясь на поверхность канала, образуют фиксированный граничный слой, который обладает иными свойствами, чем рабочая жидкость. Облитерация может быть значительна (0,1—0,3 мм) и вызывает заметное изменение расхода жидкости в регулирующих устройствах.  [c.323]

Дроссельные устройства в гидроприводах применяются для ограничения или регулирования расхода жидкости и представляют собой гидравлические сопротивления. Дроссельными устройствами могут быть нерегулируемые гидравлические сопротивления, или гидравлические демпферы, и регулируемые (дроссели).  [c.355]

Дифференциальные мембранные манометры. Дифманометры используются для измерения перепадов давления и расхода жидкости по перепаду давления в суживающем устройстве. Мембранные манометры практически не боятся больших перегрузок, так как при перегрузках мембрана прижимается к одному из фланцев и не выходит из строя. Промышленность выпускает в настоящее время различные типы дифференциальных мембранных манометров.  [c.38]

Этот способ определения расхода жидкости используется тогда, когда отсутствует возможность измерить расход с помощью стандартных устройств, либо когда поперечное сечение имеет сложную конфигурацию.  [c.42]

Принцип действия приборов этого типа основан на зависимости перепада давления в суживающем устройстве от скорости потока, а следовательно, и от расхода жидкости.  [c.42]

Практическое использование метода измерения расхода по перепаду давления в суживающем устройстве связано с необходимостью соблюдения определенных требований течение жидкости должно быть турбулентным и стационарным измерительные устройства должны быть удалены от источников местных сопротивлений (запорных вентилей, изгибов трубопровода и т. д.) поток должен заполнять все сечение трубопровода, а фазовое состояние жидкости не должно изменяться при ее прохождении через суживающее устройство поток жидкости или газа не должен образовывать каких-либо отложений на внутренних поверхностях трубопроводов.  [c.42]

Для измерения скоростей и расходов жидкости применяют приборы и устройства, основанные на различных принципах переменного и постоянного перепада, обтекания, тахометрическом, скоростного напора, наполнения, истечения, электромагнитном, тепловом, ультразвуковом, меточном и пр. Ниже рассмотрены только некоторые типы этих устройств и приборов, имеющих широкое применение в лабораторной практике и технике. Подробнее о приборах и методах измерения скоростей и расходов см. [14].  [c.136]

Одним из устройств этого типа является мерный бак (рис. 90), представляющий собой резервуар достаточного объема (чтобы заполнение его жидкостью происходило не менее чем за 1 — 2 мин), снабженный водомерным стеклом со шкалой, градуированной в единицах объема, а также решеткой для успокоения уровня жидкости. Для измерения расхода капельной жидкости последнюю направляют из трубопровода или лотка в мерный бак и с помощью секундомера измеряют время заполнения всего бака или некоторой его части. Расход жидкости опреде.ляют по формуле  [c.138]

При прохождении потока жидкости через сужающее устройство в узкой его части увеличивается скорость и уменьшается давление жидкости, в результате чего возникает перепад давлений между I VI II сечениями, пропорциональный величине расхода. Составив уравнение Бернулли для I ъ II сечений потока и заменив в нем скорости расходом, можно получить следующие уравнения для определения объемного Q и массового Мсек расходов жидкости через сужающее устройство  [c.139]

Для устойчивого истечения пленки жидкости из распределительного устройства необходимо, чтобы площадь внутреннего сечения цилиндрического насадка Аи йщ. При расходе жидкости в насадке Z)h =0,8- 1,8 м /ч наилучшей сепарационной способностью обла-,  [c.156]


Наибольшее распространение получили расходомеры мгновенного расхода жидкостей, пара или газа. В этом случае измеряют перепад давлений на участке трубопровода, где устанавливают дроссельные устройства диафрагмы, сопла и трубы Вентури. Перепад давлений зависит от скорости движения измеряемой среды, т. е. от ее расхода.  [c.263]

Вслед за возмущением, создаваемым упругой волной, начинается процесс течения жидкости через щель, образуемую краном. Если распространение упругой волны характеризуется колебательным движением жидкости, то процесс течения представляет собой поступательное движение ламинарного или турбулентного вида. Скорость течения и, следовательно, расход жидкости будут определяться разностью давлений, установившихся перед распределительным устройством и в цилиндре под поршнем размерами щели, через которую происходит наполнение плотностью жидкости и коэффициентом расхода жидкости, учитывающим гидравлические потери. Разность давлений определяется, в свою очередь, гидравлическими потерями, вызванными местными сопротивлениями и трением по всей длине трубопровода. Следует заметить, что с поворотом крана или перемещением золотника размеры щели будут изменяться и соответственно будут изменяться расход и местные сопротивления, а следовательно, и гидравлические потери.  [c.206]

Дроссельные устройства. Для регулирования расхода жидкости и, следовательно, скорости перемещения поршня в гидроприводах  [c.224]

Измерение расхода жидкости и газа. Принципиальная схема частотного расходомера жидкости, разработанного в Институте автоматики и телемеханики (ИАТ) АН СССР [28], изображена на фиг. 17. Поток жидкости вращает крыльчатую вертушку, в одной из лопастей которой запрессовано небольшое количество радиоактивного вещества 1. Поток гамма-излучения пронизывает стенку трубопровода и попадает на приемник излучения 2, соединенный с измерительным устройством 3. На пути потока излучения располагается защитный экран 4 таким образом, что излучение попадает в приемник только в течение небольшого промежутка времени за каждый оборот вертушки. Поэтому число импульсов излучения, поступающих на приемник, равно числу оборотов вертушки. На выходе измерительного устройства включен стрелочный прибор 5, показывающий значение мгновенного расхода жидкости, и электромеханический счетчик импульсов 6, который учитывает суммарный расход. Толщина защитного экрана I выбирается по формуле  [c.328]

Объёмные потери. Вследствие паразитных течений внутри насоса через уплотнения лопастного колеса, а также в иных элементах конструкции насоса (в устройствах для уравновешивания осевого давления в насосе) расход жидкости через колесо Q больше производительности насоса Q. Объёмные потери  [c.339]

Аккумулятор, кроме того, является регулятором статического давления в сети. Вместе с тем аккумулятор, связываясь посредством контрольно-распределительных устройств с насосами, регулирует работу последних. Так как установленная мощность насосной станции не может в точности при всех условиях работы соответствовать среднему расходу жидкости, аккумулятор с помощью указанных приборов выключает и обратно включает насосы в зависимости от потребления жидкости в сети.  [c.466]

Особенностью указанной схемы является применение сосудов с разделительной л<идкостью на линиях от сужающего устройства до дифференциального манометра. Компоновка дифференциального манометра и сужающего устройства производится в соответствии с Правилами 28-64 измерения расхода жидкостей и газов для случая измерения расхода жидкости с применением сосудов с разделительной жидкостью. Эти сосуды устанавливаются на соединительных линиях ближе к сужающему устройству.  [c.53]

При измерении расхода жидкости на горизонтальных участках трубопровода соединительные линии подключаются к нижней половине сужающего устройства, а диф-манометр располагают ниже (рис. 52, а). При необходимости расположить дифманометр выше сужающего устройства в верхних точках линий устанавливают газосборники (показано пунктиром).  [c.159]

При размещении рассматриваемого струйного течения в аппарате как показано на рис. 8.1, у которого расстояние от среза сопла до конца камеры смешения равно длине начального участка струи, а площадь поперечного сечения камеры смешения равна площади переходного сечения струи, КПД процесса эжекции будет максимальным. Основываясь на этом, был изготовлен односопловый струйный аппарат, камера смешения и диффузор которого были выполнены из прозрачных плексиглазовых втулок (рис. 8.2) диаметром = 27 и 23 мм. Сопла струйного аппарата были сменными и имели разные диаметры = 12,5 12 11,5 11 10,5 10 мм. Набором втулок изменялась длина камеры смешения от 180 до 1700 мм. В собранном виде струйный аппарат устанавливался горизонтально (рис. 8.3), жидкость нагнеталась в сгруйный аппарат насосом (рис. 8.4), подавался атмосферный воздух. После струйного аппарата газожидкостная смесь подавалась в емкость, в которой происходило разделение на газ и жидкость. Воздух из емкости выходил в атмосферу, а жидкость вновь подавалась в насос. Регулирование давления жидкости при ее подаче в струйный аппарат выполнялось вентилем, установленным на байпасе. Давление газожидкостной смеси - полный напор струи - измерялось образцовым манометром и тензометрическим датчиком. С помощью образцовых манометров и тензометрических датчиков измерялись изменения давления по длине струи аппарата, причем сигналы от тензодатчиков поступали на преобразователь, а от него на регистрирующие устройства самописец, магнитофон, дисплей измерительного комплекса фирмы "ДИ(7А" - Дания (рис. 8.5). Давление газожидкостной смеси регулировалось вентилем, установленным на трубопроводе, выводящем газ из емкости. Расходы жидкости и газа, поступающих в струйный аппарат, измерялись с помощью диафрагмы и дифференциальных манометров, выполненных и установленных по правилам измерения расходов газа и жидкости стандартными устройствами [5].  [c.189]


Большое влияние на скорость истечения и расход жидкости оказывает форма входной кромки. Например, устройство плавного за-кругленля на входе может полностью устранить внутреннее сжатие струи н вызвать увеличение скорости II расхода.  [c.103]

Для измерения расходов жидкостей применяют расходомеры — устройства, состоящие из преобразователя расхода, непосредственно воспринимающего скорость или расход потока и преобразующего их в другую величину, удобную для измерения измерительного прибора и соединительного устройства, передающего выходной сигнал преобразователя прибору. Преобразователи скорости и расхода (а следовательно, и расходомеры) основаны на самых разных принципах переменного перепада давления, перемеппого уровня, обтекания, тахометри-ческом, силовом, тепловом, электромагнитном, оптическом, ультразвуковом и др. Ниже рассмотрены только некоторые виды этих расходомеров, имеющих широкое применение в производственных и лабораторных условиях.  [c.137]

Одна из современных конструкций газодинамического органа управления основана на принципе изменения направления вектора силы тяги основного двигателя путем впрыска жидкости или вдува газа в сопло (рис. 1.9.11,е). Механизм возникновения управляющего усилия состоит в следующем. Поток жидкости или газа, подводимый в сверхзвуковую часть сопла через отверстие 1, взаимодействует со сверхзвуковым потоком газообразных продуктов сгорания топлива и, отклоняясь, от первоначального направления, течет в область 2. При обтекании основным потоком этой области образуется скачок уплотнения 3, за которым происходит поворот потока и, как следствие, повышение давления. В результате возникает управляющее усилие Рр. Изменяя расход жидкости, впрыскиваемой в сопло,можно регулировать величину управляющей силы.Впрыск жидкости через различные отверстия, расположенные по окружности поперечного сечения сопла, позволяет обеспечить необходимое направление этой силы. Особенность рассматриваемого рулевого устройства состоит в том, что возникновение управляющего усилия практически происходит без уменьшения тяги основного двигателя. Объясняется это тем, что снижение тяги вследствие потери механической энергии потока газа при переходе через скачок уплотнения компенсируется ее возрастанием благодаря увеличению массы истекающих газов. Более того, тягу можно несколько увеличить, если в качестве впрыскиваемой жидкости применить окислитель, который, вступая в химическую реакцию с недогоревшим топливом, увеличит полноту сгорания. Достоинством рулевого устройства является отсутствие в нем дополнительных подвижных элементов двигателя или сопла,, что упрощает конструкцию и делает его более надежным в эксплуатации.  [c.86]

Дифманометры должны присоединяться к суживающему устройству с помощью трубок диаметром не менее 8 мм. Для правильного измерения расхода необходимо, чтобы в соединительных трубках не скапливался конденсат при измерении расхода газа и газовые пузырьки при измерении расхода жидкости. Поэтому трубки должны устанавливаться либо вертикально, либо с уклоном не менее 1 10, в последнем случае на концах трубопроводов должны быть установлены конденсаторы или газосборни-ки с продувочными вентилями.  [c.48]

Недостатком спрейерного устройства является плохое использование закалочной жидкости. Жидкость, ударив в поверхность детали, сливается в поток, скользящий вдоль поверхности в зазоре между деталью и индуктором, и быстро уходит вниз. Опыт показывает, что несмотря на наличие очень горячих брызг, температура жидкости (в среднем за цикл) повышается всего на несколько градусов. Этим объясняется большой расход жидкости, подаваемой в спрейер. По иитенсивности [8] различают душевое охлаждение водой с удельным расходом 0,12 л/с-см , приходящимся на 1 см закаливаемой поверхности, как очень сильное , с расходом 0,05 л/с-см — сильное , с расходом 0,015 л/с-см — слабое . Расход жидкости и время охлаждения уточняют опытным путем, стараясь, чтобы время охлаждения детали было несколько меньшим, чем время нагрева, и самоотпуск прошел надлежащим образом. Охлаждение может быть продолжено при необходимости в дополнительном устройстве. Практически нет надобности вести охлаждение с максимальной интенсивностью. Как только температура закаливаемой поверхности приблизится к температуре закалочной жидкости, подачу жидкости в спрейерное устройство можно уменьшить.  [c.19]

На фиг. 27 дана схема дифференциального реле давления, предназначенного для сигнализации отклонения величины расхода жидкости, протекающей по трубопроводу, от задаппого значения. Сильфон здесь выполняет роль чувствительного элемента измерительного устройства и разделяет полость корпуса иа две части плюсовую и минусовую. В эти части подводятся разные давления. Перепад давления вызывает перемещение сильфона, которое затем передается рычажным устройством стрелке шкалы прибора  [c.21]

Испытания проводились при расходах от 378 до 900 л1час (максимальная пропускная способность поверочной установки). Максимальная погрешность такого радиоактивного расходомера при измерении расхода жидкости достигала +2,5%, а при измерении количества +0,5%. Имеется полная возможность выноса измерительного устройства расходомера на расстояние до 100—150 м от места измерения.  [c.269]

Отработка проточной части на модели насоса проводится на специальном испытательном стенде, представляющем собой замкнутую циркуляционную трассу, имеющую органы измерения и регулирования расхода жидкости. Для кавитационных испытаний в трассу встраивается кавитационный бак. На рис. 7.6 изображена принципиальная схема такого стенда, использовавшегося для испытания модели насоса реактора РБМК. Он состоит из основной трассы 3 с задвижками /, //, 14 и кавитационным баком 13, трассы слива протечек 5 через разгрузочную камеру с вентилем 10, трассы слива протечек 7 через уплотнение с плавающими кольцами. Расход в трассах 3, 5 измеряется сужающими устройствами 2, 9, а в трассе 7 — ротором 8. Для поддержания температуры воды в стенде в допустимых пределах кавитационный бак оборудован змеевиком 12, через который циркулирует охлаждающая вода. Задвижки 1, 14 служат для регулирования расхода, а задвижка 11 регулирует подпор во всасывающем трубопроводе ГЦН. При помощи вентиля 10 достигается изменение гидродинамической составляющей осевой силы F испытываемой модели.  [c.217]

Методика испытаний проточной части горелок на стендах в основном унифицирована. Все необходимые при испытаниях измерения проводятся с помощью трубки Прандтля и многоканальных цилиндрических и шаровых зондов различных типов. Необходимые для продувок расходы воздуха устанавливаются регулирующими шиберами и контролируются по перепадам давлений на измерительных расходомерных устройствах. В качестве расходомерных устройств на аэродинамических стендах применяются сменные диафрагмы, сопла, лемнискатные сопла, выполненные в соответствии с требованиями Правил 28-64 измерения расхода жидкостей, газов и паров диафрагмами и соплами .  [c.141]

Регулирующий прибор состоит из измерительного и электронного блоков, объединенных в одном корпусе. Исполнительный механизм, выполняемый в виде колонки дистанционного управления и электропривода с редуктором, размещается отдельно от регулирующего прибора и может управляться с помощью специального дистанционного управления. Регулирующая аппаратура предназначена для реализации автоматических систем регулирования (АСР) различных технологических процессов. Она обеспечивает суммирование и компенсацию электрических сигналов, поступающих от первичных приборов (преобразователей сигналов), и усиление этих сигналов до значения, необходимого для управления пусковым устройством электрического исполнительного механизма. При этом регулирующие приборы в сочетании с исполнительным механизмом с постоянной скоростью позволяют осуществить П - и ПИ-законы регулирования. Более сложный ПИД-закон регулирования формируется лишь при подаче на вход электронного блока дополнительного сигнала по скорости изменения регулируемой величины. Регулирующие приборы РПИБ модифицируются по типу установленных в них измерительных блоков. Например, в РПИБ-И1 установлен измерительный блок типа И-П1 для суммирования и компенсации электрических сишалов, поступающих от трех индукционных или дифференциально-трансформаторных датчиков переменного тока, в РПИБ-IV — от четырех. Приборы РПИБ-П1 и РПИБ-IV применяются, как правило, в АСР давления, уровня, расхода или соотношения расходов жидкостей, пара или газа, т. е. в тех случаях, когда используются датчики переменного тока.  [c.197]


Рис. 52. Монгаж сужающего устройства и соединительных линии а — при измерении расхода жидкости б — при измерении расхода пара и горячих жидкостей в — при измерении расхода газа / — сужающее устройство 2—запорный вентиль 3 — продувочный вентиль 4 — отстойный сосуд 5 — дифманометр 6 —газосборник 7 — уравнительный сосуд Рис. 52. Монгаж сужающего устройства и <a href="/info/276394">соединительных линии</a> а — при <a href="/info/214237">измерении расхода жидкости</a> б — при <a href="/info/214236">измерении расхода</a> пара и горячих жидкостей в — при <a href="/info/603375">измерении расхода газа</a> / — сужающее устройство 2—<a href="/info/54533">запорный вентиль</a> 3 — продувочный вентиль 4 — отстойный сосуд 5 — дифманометр 6 —газосборник 7 — уравнительный сосуд
Измерение расхода жидкостей, водяного пара и газов мерные баки водомеры, сужающие (дроссельные) устройства иневмометрические трубки.  [c.13]


Смотреть страницы где упоминается термин Устройства Расход жидкости : [c.829]    [c.276]    [c.229]    [c.293]    [c.139]    [c.160]    [c.21]    [c.63]    [c.34]   
Справочник конструктора-машиностроителя Том 3 Изд.5 (1980) -- [ c.387 ]

Справочник конструктора машиностроителя Том 3 Издание 5 (1979) -- [ c.387 ]



ПОИСК



Глава двенадцатая. Измерение расхода жидкостей, газа и пара по перепаду давления в сужающем устройстве

Глава четырнадцатая. Измерение расхода и количества жидкостей, газа и пара по перепаду давления в сужающем устройстве

Методические указания по измерению расхода жидкостей, газов и пара расходомерами с сужающим устройством

Монтаж сужающих устройств для измерения расходов жидкостей, пара и газов

Расход жидкости

Устройства для измерения расходов жидкостей, паров, газов



© 2025 Mash-xxl.info Реклама на сайте