Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нержавеющие питтинговая

В табл. 2 приведены химический состав и данные, характеризующие относительную стойкость нержавеющих сталей к питтинговой коррозии по питтинговому эквиваленту (PRE), который определяется соотношением (Сг + ЗМо) %.  [c.22]

При эксплуатации в морской воде нержавеющие стали обычно имеют потенциал +200 мВ по НКЭ. При увеличении потенциала понижается критическая температура питтингообразования при определенной концентрации хлоридов и постоянном потенциале и, следовательно, повышается опасность питтинговой коррозии.  [c.22]


Нержавеющие стали по своей стойкости к общей коррозии занимают одно из первых мест среди конструкционных материалов. Вместе с тем они склонны к различным видам местной коррозии, таким, как питтинговая, межкристаллит-ная, щелевая коррозия и коррозионное растрескивание. Химический состав стали оказывает существенное влияние на ее склонность к локальной коррозии. Молибден — элемент, наиболее эффективно понижающий склонность нержавеющих сталей к питтингообразОванию и межкристаллитной коррозии.  [c.32]

Исходя из изложенного можно заключить, что для возникновения активных центров, в которых могла бы развиваться питтинговая коррозия на нержавеющих сталях, достижение сплавом критического потенциала активирования является необходимым, но еще недостаточным условием. Чтобы сплав подвергся питтинговой коррозии, необходима еще и минимальная (критическая) плотность тока. Ее можно определить по следующим признакам  [c.189]

Нарушение сплошности пассивной пленки на неметаллических включениях при воздействии ионов галогенидов является причиной язвенной и питтинговой коррозии. Язвенная коррозия характерна для нержавеющих сталей, алюминиевых сплавов, медных сплавов при высоких скоростях движения воды. Сохранению активного состояния дна язвы способствуют гидролиз продуктов коррозии, высокая плотность анодного тока гальванической пары.  [c.34]

Для коррозионного поведения нержавеющих сталей в морской воде характерна склонность к питтинговой коррозии, начало которой определяет значение потенциала питтингообразования. Потенциалы питтингообразования для различных нержавеющих сталей в растворе хлорида натрия приведены в табл. 2.3.  [c.27]

Если нержавеющие стали предполагается использовать в условиях полного погружения, то для предупреждения разрушения металла необходимо принять специальные меры защиты. Необходимо либо обеспечить поддержание пассивности, либо использовать катодную защиту. Большая скорость потока морской воды у поверхности металла позволяет обеспечить приток свежего кислорода, необходимого для пассивации, что ускоряет залечивание дефектов защитной окисной пленки. Быстрый поток, кроме того, препятствует биологическому обрастанию. В неподвижной воде важным средством борьбы с коррозией является катодная защита, позволяющая предотвратить опасность возникновения и развития щелевой, питтинговой, туннельной и кромочной коррозии, а также всех видов селективного разрушения металла.  [c.60]


В табл. 18 приведена общая сводка данных о коррозионном поведении некоторых нержавеющих сталей в поверхностном слое воды. Все типы нержавеющих сталей склонны к питтинговой и щелевой коррозии, но при этом сплавы с более высоким содержанием легирующих компонентов обладают все же несколько более высокой стойкостью.  [c.60]

Аустеиитные нержавеющие стали, например 304 и 316, склонны к щелевой и питтинговой коррозии (рис. 34). Удовлетворительная стой-  [c.60]

Нержавеющая сталь Склонность к питтинговой и щелевой коррозии Катодная защита Стойкость в условиях быстрого потока Примечание  [c.61]

Рис. 35. Зависимость общей и питтинговой коррозии нержавеющей стали 304 в щелевых условиях на разных глубинах от площади металла вне щели [34]. Максимальная глубина питтинга 3.18 мм соответствует перфорации Рис. 35. <a href="/info/567366">Зависимость общей</a> и <a href="/info/48441">питтинговой коррозии нержавеющей стали</a> 304 в щелевых условиях на разных глубинах от площади металла вне щели [34]. Максимальная глубина питтинга 3.18 мм соответствует перфорации
В эту категорию включены цементируемые и специальные нержавеющие стали, которые не могли быть включены в другие классификации. Повышенное содержание никеля н добавление молибдена в эти стали предназначается для увеличения защитных свойств их пассивных пленок и увеличения сопротивляемости питтинговой коррозии. Так как пчс-сивные пленки этих сталей обладают гораздо лучшей стойкостью к коррозии. любая коррозия локализована в форме щелевой и питтинговой.  [c.352]

Канаты № 10—17, 29—34, 41 и 42 были из нержавеющих сталей разного химического состава. Тросы из нержавеющей стали марки 304 диаметром 4,76 мм (№ 10—13 и 29—31) со снятым и неснятым напряжением подвергались щелевой, питтинговой и туннельной коррозии. Многие проволоки, особенно внутренние, вследствие коррозии разрушились. На канатах из нержавеющей стали марки 304 диаметром от 6,35 мм до 9,53 мм (32,33 и 34) наблюдались, при той же длительности экспозиции, лишь пятна ржавчины. Добавки ванадия и азота (канат номер 16) в состав стали марки 304 не улучшали ее коррозионную стойкость.  [c.428]

В США широко используется нержавеющая сталь типа 18/8, а в Великобритании она всегда разрушается в результате пит-тинга, который проявляется после 7—9 месяцев службы и быстро поражает нержавеющую сталь, вероятно, в результате допускаемых условий застоя. Непрерывное повышение уровня знаний в области материалов и технологии их получения привело к созданию сплавов со значительно лучшими свойствами. Сплавы железа с хромом и молибденом теперь могут быть получены электроннолучевой плавкой, они содержат низкий процент углерода, кислорода и примесных элементов, что обеспечивает кроме хороших механических свойств отличное сопротивление воздействию среды. Есть надежда, что сплав Орион-61 , содержащий 26% Сг, 2% Мо, >0,01% С, будет обладать хорошей прочностью и хорошей стойкостью против питтинговой коррозии и хорошо свариваться. Эти свойства будут очень полезны при использовании его для труб конденсатора.  [c.235]

Механизм действия сульфидов на основе кальция подобен описанному ранее для питтинговой коррозии нержавеющих сталей. Их более высокая, по сравнению с сульфидами марганца, коррозионная опасность объясняется более высокой скоростью растворения в электролитах.  [c.129]

Коррозионные проблемы в большинстве случаев рассматриваются не в общем виде, а применительно к металлам, для которых они наиболее характерны или технически важны. Так, атмосферная, биогенная и почвенная коррозия разбираются на примере углеродистых сталей, закономерности питтинговой и межкристал-литной коррозии, а также коррозионного растрескивания — на примере нержавеющих сталей. Описание каждого вида коррозии во всех случаях завершается изложением соответствующих практических мер,антикоррозионной защиты.  [c.15]

На практике катодную защиту можно применять для предупреждения коррозии таких металлических материалов, как сталь, медь, свинец и латунь, в любой почве и почти всех водных средах. Можно предотвратить также питтинговую коррозию пассивных металлов, например нержавеющей стали и алюминия. Катодную защиту эффективно применяют для борьбы с коррозионным растрескиванием под напряжением (например, латуней, мягких и нержавеющих сталей, магния, алюминия), с коррозионной усталостью большинства металлов (но не просто усталостью), межкристаллитной коррозией (например, дуралюмина, нержавеющей стали 18-8) или обесцинкованием латуней. С ее помощью можно предупредить КРН высоконагруженных стрей, но не водородное растрескивание. Коррозия выше ватерлинии (например, водяных баков) катодной защитой не предотвращается, так как пропускаемый ток протекает только через поверхность металла, контактирующую с электролитом. Защитной плотности нельзя также достигнуть на электрически экранированных поверхностях, например на внутренней поверхности трубок водяных конденсаторов (если в трубки не введены вспомогательные аноды), даже если сам корпус конденсатора достаточно защищен.  [c.215]


Следовательно, железо, имеющее в морской воде коррозионный потенциал около —0,4 В, непригодно для использования в качестве протектора для катодно защищаемого алюминия, в отличие от цинка, который имеет более подходящий коррозионный потенциал, близкий —0,8 В. Для нержавеющей стали 18-8 критический потенциал в 3 % растворе Na l равен 0,21 В, для никеля — около 0,23 В. Следовательно, контакт этих металлов с имеющими соответствующую площадь электродами из железа или цинка может обеспечить им в морской воде эффективную катодную защиту, предупреждающую питтинговую коррозию. Элементы создаваемых конструкций (например, кораблей и шельфовых нефтедобывающих платформ) иногда специально проектируют таким образом, чтобы можно было успешно использовать гальванические пары такого рода.  [c.227]

На нержавеющих сталях, помещенных в морскую воду, глубокий питтинг развивается в течение нескольких месяцев начинается питтинг обычно в щелях или в других местах с застойным электролитом (щелевая коррозия). Склонность к локальным видам коррозии больше у мартенситных и ферритных сталей, чем у аустенитных. У последних склонность тем ниже, чем выше в них содержание никеля. Аустенитные стали 18-8, содержащие молибден (марки 316, 316L, 317), еще более стойки в морской воде, однако через 1—2,5 года и эти сплавы подвергаются щелевой и питтинговой коррозии.  [c.311]

Сталь марки Саникро 28 обладает также высокой стойкостью и реко-Табтца 2. Относительная стойкость нержавеющих сталей к питтинговой коррозии  [c.22]

Как известно, нержавеющие стали склонны к питтинговой коррозии, поэтому представляет интерес изучить это явление на хромомарганцевых сталях. Опыты показали, что на большинстве сплавов этого класса коррозия появляется через 5 сут. Исключение составляет сталь Х15АГ15Р, содержащая в своем составе небольщие добавки бора. Начальными очагами коррозии являются микро- и макротрещины, царапины и другие механические дефекты на поверхности сплава.  [c.69]

Поскольку коррозионное растрескивание, так же как и питтинговая коррозия, является по своей природе электрохимическим процессом, развивающимся в результате депассивации части металлической поверхности, стойкость металла к данному виду разрушения определяется прежде всего стабильностью возникающей на нем пассивирующей пленки [152,15 3] и может регулироваться за счет регулирования электродного потенциала металла. В настоящее время хорошо известно, что наложение катодной поляризации затрудняет, а анодной - облегчает развитие коррозионного растрескивания. Так, например, катодная поляризация аустенитной нержавеющей стали в кипящем растворе Mg l2 током 3 10" а/см обеспечило защиту ее от растрескивания на протяжении всего опыта, длившегося 24 ч [154]. Показано также [ 155], что полную защиту стали 18/9 в кипящем 42%-ном растворе Mg l2 удается обеспечить катодной поляризацией ее током 1,5 10-4 а/см2.  [c.35]

Особым случаем является катодная защита нержавеющей стали, при которой защитный потенциал находится внутри облааи пассивности этой стали (см. 8.2). Можно, например, предотвращать питтинговую и щелевую коррозию нержавеющей стали марки A1S1304 в природной морской воде с помощью катодной защиты, поддерживая потенциал немного ниже —0,35 В по насыщенному каломельному электроду.  [c.69]

Особенно опасна питтинговая коррозия. Этому виду разрушения в наибольшей мере подвержены нержавеющие стали, коррозионная стойкость которых определяется образованием на них пассивационных пленок. Такие стали, легко пассивирую-идаеся в окислительных средах, подвергаются в присутствии ионов галогенов (депассиваторов) местному коррозионному разрушению, которое проявляется в виде мелких глубоких поражений, называемых пнттиигами. Данный вид коррозии вызывает сильные разрушения многих конструкций и трубопроводов 176, 83].  [c.35]

При наличии в электролите активирующих агентов, например хлорид-ионов, при определенном потенциале ф ер пассивное состояние нарушается, что ведет к ускорению анодного растворения. Объясняется это тем, что по мере смещения потенциала в сторону положительных значений усиливается адсорбция хлорид-ионов. Поскольку степень покрытия поверхности кислородом в местах, где имеются дефекты в структуре оксидной пленки, неодинакова, начинают преимущественно адсорбироваться хлорид-ионы, и вместо пассивирующего оксида образуется галогенид, обладающий хорошей растворимостью. Развивается питтинговая коррозия, которой особенно подвержены нержавеющие стали и другие легко пассивирующиеся металлы.  [c.15]

Очень важное применение катодная защита находит для подавления местных видов коррозии медных сплавов, нержавеющих сталей в растворах хлоридов и в морской воде. Применение протекторов пз углеродистой стали, выполняемых в виде отдельных деталей конструкции или специальных протекторов, обеспечивает защиту медных сплавов от струевой и язвенной коррозии, нержавеющих сталей от питтинговой коррозии. Перспективно направление по созданию композитных конструкций, где за счет других деталей, элементов обеспечивается протекторная катодная защита наиболее ответственных узлов (запорные органы клапанов, рабочие колеса насосов, теплообменные трубы и т. д.).  [c.144]

Поверхность ферритной нержавеющей стали 430 примерно через год после начала экспозиции в морской атмосфере частично покрывается ржавчиной. Более высокое содержание хрома (17 /о) но сравнению со сталью 410 повышает стойкость к питтинговой коррозии. Скорость общей коррозии в морской атмосфере, аналогичной атмосфере Кристобаля, настолько мала, что с большим трудом может быть определена путем измерения массы [31].  [c.58]


Сплав Инколой 800, как показано в табл. 31, обладает хорошей стойкостью на больших глубинах. Такое поведение является неожиданным и не соответствует составу сплава, очень близкому к составам ау-стеннтных нержавеющих сталей, склонных к питтинговой коррозии.  [c.86]

При полном погружении сплав Инколой 825 может испытывать локальную коррозию в неподвижной морской воде при обрастании и в щелях. Тем не менее стойкость этого сплава к питтинговой и щелевой коррозии гораздо выше, чем у аустенитных нержавеющих сталей. Так, в одном из экспериментов скорость коррозии сплава Инколой 825 в условиях погружения составила при 3-летней экспозиции 0,46 мкм/год. С такой же скоростью протекала и коррозия этого сплава на среднем уровне прилива и в зоне брызг. При этом локальная коррозия не наблюдалась ни в условиях хорошей аэрации в зоне брызг, ни при полном погружении. В условиях погружения, правда, возможно появление отдельных питтингов, если степень аэрации морской воды недостаточна. В табл. 30 приведены результаты испытаний сплава Инколой 825 па малых глубинах. Инколой 825 стоек к коррозионному растрескиванию под напряжением в горячей морской воде, поэтому применяется в теплообменниках, использующих морскую воду.  [c.86]

Нержавеющие стали обычно корродируют в морской воде по пит-типговому и щелевому механизмам коррозии. Образование питтингов начинается с пробоя защитной пленки в ее слабых местах или неоднородностях. За пробоем следует образование электрохимической ячейки, анодом которой является маленькая по площади поверхность активного металла, а катодом — большая поверхность пассивного металла. Большая разность потенциалов этого активно-пассивного элемента вызывает значительный ток с сопровождающим его быстрым развитием коррозии (питтинговой) на маленьком аноде.  [c.309]

Нержавеющие стали подвергаются питтинговой коррозии в аэрированной морской воде. Питтинговая коррозия менее выражена в быстро текущей морской воде по сравнению с частично аэрированной стоячей морской водой. Поток морской воды уносит продукты коррозии, которые в противном случае скапливались бы в щелях или трещинах. Он обеспечивает такнсе пассивность всей поверхности сплава за счет свободного доступа к ней растворенного в воде кислорода.  [c.309]

Как отмечалось выше, нержавеющие стали обычно подвергаются в морской воде питтинговой ц щелевой коррозии. Поэтому от 90 до 95 % плрщади поверхности экспонированных образцов может не под-  [c.309]

Химический состав нержавеющих сталей серии A1SI 300 приведен в табл. 115, скорости и типы коррозии — в табл. 116, коррозионное поведение под напряжением — в табл. 117 и влияние экспозиции на их механические свойства — в табл. 118, Коррозионное поведение нержавеющих сталей серии AIS1 300 было очень неустойчивым и непредсказуемым. Они подвергались щелевой, питтинговой и туннельной коррозии в разной степени — от начальных проявлений до сквозных язв и туннелей, распространяющихся вдоль поверхности образцов на расстояние 28 см. Сравнение интенсивностей упомянутых выше типов локальной коррозии с соответствующими скоростями равномерной коррозии не показало наличия между ними определенных корреляций.  [c.313]

Данные табл. 116 показывают, что в целом интенсивность щелевой, питтинговой и туннельной коррозии была чуть выше на поверхности, чем на глубине. Скорости коррозии в соответствии с этим для большинства сплавов были также немного выше на поверхности. Основываясь на этих данных, можно сделать вывод, что глубина экспозпции в океане не оказывает значительного влияния на коррозию нержавеющих сталей серии AISI 300.  [c.328]

Не наблюдалось определенной связи между интенсивностями питтинговой, туннельной п щелевой коррозии нержавеющих сталей серии AISI 300 после 1 года пх экспозпции п изменениями концентрации кислорода в морской воде. На основании вычисления скоростей коррозии для тех сплавов, образцы которых имели определенные потери массы, можно сделать вывод об увеличении скоростей коррозии с увеличением концентрации кислорода. Однако эти скорости увеличиваются неравномерно.  [c.328]

Стали 5—7AMV корродировали по щелевому, питтинговому, туннельному и кромочному типам коррозии с очень высокими скоростями. Во многих случаях большие части образцов полностью разрушились в результате коррозии. В других случаях туннельная коррозия распространялась вдоль поверхности образцов на расстоянии от 28 до 30,5 см в течение одного года экспозиции. Эти стали были существенно более подвержены коррозии, чем остальные дисперсионнотвердеющие нержавеющие стали.  [c.335]

Сплавы Fe с А1 обладают высокой окалиностойкостью, износостойкостью и твёрдостью. Характерными представителями таких сплавов являются альфенол (Fe + 16 % А1) и терменол (Fe + 16 % А1 + 3 % Мо или V). Они стойки в сильно окислительных кислотах. Терменол более стоек к коррозии при испытаниях в камере с солевым разбрызгиванием, чем хромистая нержавеющая сталь типа XI2. Причём для терменола характерна равномерная коррозия, а для стали Х12 - питтинговая.  [c.56]

Эта потребность возрастет в 20 раз. Создание высокопроизводительных опреснительных установок требует применения титановых сплавов. Применение титановых труб в теплообменных и опреснительных установках позволило увеличить выход конденсата с 2840 до 5680 м в сутки. Вследствие этого оказалось возможным снизить массу трубной системы теплообменных аппаратов на 75—80% по сравнению с медноникелевыми сплавами. Уменьшение толщины стенок труб из титановых сплавов позволяет улучшить теплообменные характеристики трубной системы, несмотря на их меньшую теплопроводность по сравнению с медноникелевыми или нержавеющ,ими трубами. Опытные системы с трубами и арматурой из титановых сплавов проработали в воде свыше 39 мес при скорости потока до 6,1 м/с без признаков повреждений при очень высоких скоростях потока (42 м/с), недопустимых для любых других материалов, отмечены незначительные коррозионно-эррозионные процессы износ — 0,2 мм/год. Следует отметить при этом, что высокая удельная прочность титановых сплавов позволяет уменьшить размеры, массу и улучшить условия размещения систем. Если учесть, что усталостная прочность титановых сплавов не снижается в воде, то можно охарактеризовать их как идеальный материал для трубопроводов. Зарубежные специалисты отмечают, что титановые сплавы подвержены биологическому обрастанию в такой же мере, как нержавеющие стали. Однако процесс очистки титановых систем значительно проще. Кроме обычных противообрастающих красок возможно хлорирование титановых систем с промыванием теплой водой (52° С) при скорости до 1,6 м/с. После снятия обрастания не наблюдаются щелевая или питтинговая виды коррозии.  [c.235]

На рис. 9.9 показано, как в зависимости от содержания хрома изменяется скорость коррозии аморфных сплавов Ni — Сг —15 Р — 5 В в водном растворе 10 /о Ре01з-6 НгО 1[Ш]- Этот раствор часто применяется в экспериментах по щелевой коррозии аморфных сплавов на железной основе. Нержавеющая сталь 18 Сг — 8 Ni хорошо изученная в кристаллическом состоянии, имеет склонность к сильной щелевой коррозии в указанном выше растворе средняя скорость коррозии здесь достигает 10 мм в год. В аморфных сплавах на кобальтовой и никелевой основах, где питтинговая коррозия  [c.256]


Введение в сталь никеля способствует не только улучшению механических свойств вследствие аустенизации структуры, но и облегчает пассивацию и повышает устойчивость пассивного состояния, в том числе в средах, провоцирующих развитие таких локальных коррозионных процессов как питтинговая и щелевая коррозия. Повышение коррозионной стойкости сталей вследствие легирования их никелем не связано с изменением состава и свойств пассивирующей пленки — никель в составе пассивирующих пленок не обнаружен. Недостатком хромоникелевых аустенитных сталей является их низкая стойкость портив коррозионного растрескивания, минимум которой приходится на наиболее широко распространенные стали типа 18 r-8Ni. Более 70% всех производимых нержавеющих сталей являются сталями аустенитного класса, содержащими > 17% хрома и свыше 10 % никеля.  [c.188]

Для большего повышения коррозионной стойкости в состав хромоникелевых нержавеющих сталей вводят молибден. Молибден улучшает пассивируемость сталей в неоьсислительных средах, сужая область активного растворения, и способствует существенному снижению их склонности к питтинговой и щелевой коррозии за счет затруднения питтингообразования, облегчения репассивации, снижения скорости растворения металла в очагах локальной коррозии и увеличения индукционного периода.  [c.188]


Смотреть страницы где упоминается термин Нержавеющие питтинговая : [c.364]    [c.453]    [c.87]    [c.193]    [c.249]    [c.126]    [c.144]    [c.354]    [c.359]    [c.137]   
Морская коррозия (1983) -- [ c.62 , c.65 ]



ПОИСК



504—505 ( ЭЛЛ) нержавеющие

Влияние хрома и молибдена на питтинговую коррозию нержавеющих сталей

Основные закономерности зарождения и развития питтинговой коррозии на нержавеющих стаВлияние концентрации окислителя и активатора на питтинговую коррозию

Питтинговая коррозия нержавеющих сталей Влияние длительности пребывания электролита в щелях и зазорах на скорость атмосферной коррозии

Питтинговая коррозия сталей нержавеющих



© 2025 Mash-xxl.info Реклама на сайте