Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кадмий, коррозия

Кадмий, коррозия 167, 168 Катодная защита общая характеристика 203, 204 влияющие факторы 168, 169 выбор анодов 171—176 известковые отложения 169, 170 плотность тока необходимая 170, 171 Керамика, коррозия 471, 472  [c.508]

Кадмиевые покрытия 484, 873—883 как способ борьбы с коррозионной усталостью 618 коррозия в атмосфере 875—878 коррозия в газах 878—879 коррозия в жидкостях 879—881 лабораторные испытания 881 технические условия 882—883 Кадмий, коррозия в атмосфере 339  [c.1230]


На рис. 274 приведена карта Советского Союза по атмосферной коррозии железа применительно к условиям сельской местности. Аналогичные карты составлены также для цинка, кадмия, меди и алюминия. Влияние загрязненности атмосферы и других факторов на скорость атмосферной коррозии металлов может быть учтено введением соответствующих поправочных коэффициентов, что позволяет, по А. И. Голубеву и М. X. Кадырову, прогнозирование коррозии металлов в атмосферных условиях.  [c.383]

Рис. 95. Характер зависимости скорости коррозии сплавов Mg — ей в перемешиваемой 0,1 н. серной кислоте при 10° С от содержания кадмия Рис. 95. <a href="/info/656717">Характер зависимости</a> <a href="/info/39683">скорости коррозии</a> сплавов Mg — ей в перемешиваемой 0,1 н. <a href="/info/44834">серной кислоте</a> при 10° С от содержания кадмия
Цинк и кадмий — электроотрицательные металлы. Нормальный электродный потенциал первого — 0,762 в, второго — 0,402 в. Способность к пассивации у цинка и кадмия невелика. И тот и другой металл нащли применение главным образом в виде покрытий для углеродистой стали для защиты ее от коррозии в атмосферных условиях. Цинк нашел также применение в качестве протектора (гл. XIX).  [c.265]

Рассчитайте давление водорода, необходимое для подавления коррозии кадмия в деаэрированной воде при 25 °С продукт коррозии d(0H)2 [произведение растворимости d(0H)2 равно 2-10 ].  [c.388]

Для разбавленной амальгамы кадмия в деаэрированном растворе, содержащем ионы кадмия, выведите выражение для расчета наклона кривой, которая отвечает зависимости скорости коррозии от pH. Концентрационной поляризацией пренебречь считать, что практически вся амальгама является катодом.  [c.389]

В атмосфере SOj скорость коррозии не зависит от температуры для всех исследуемых материалов, кроме стали температурный коэффициент для меди, цинка, кадмия, алюминия, АМц равен нулю. Металлы по увеличению скорости коррозии с ростом температуры располагаются в такой последовательности  [c.51]

Анодными по отношению к железу являются магний, алюминий, цинк, кадмий, Никель, хром, медь, серебро, золото, нержавеющая сталь и медь работают в контакте с железом в качестве катодов и способствуют увеличению коррозии.  [c.53]

Состав 3 не вызывает коррозии высокопрочных сталей без покрытий. Состав 2 вызывает коррозию деталей, подвергнутых пескоструйной обработке, а также деталей с покрытиями из цинка и кадмия.  [c.14]


Кристаллический порошок светло-желтого цвета, нерастворим в воде. Малотоксичен. Относится к летучим ингибиторам атмосферной коррозии. Температура плавления 230—240° С. Защищает от атмосферной коррозии серебро, никель, олово, оксидированный магний, медь. Не полностью защищает алюминий, кадмий, железо. На упаковочные материалы, деревянную тару, краски, органические покрытия, текстиль, кожу отрицательного действия не оказывает  [c.105]

Летучесть — 0,76 мг/м . Защищает от коррозии изделия из стали, алюминия, его сплавов, никеля, хрома, кобальта, а также из стали фосфатированной и оксидированной. На меди и ее сплавах образует окисную пленку. Не защищает и в ряде случаев вызывает коррозию изделий из цинка, кадмия, серебра, магниевых сплавов. Чугун требует дополнительной консервации маслами или смазками. Срок действия ингибитора более 10 лет  [c.107]

Антикоррозионная бумага марки ХЦА 14-80 на основе хромата циклогексиламина обеспечивает защиту от атмосферной коррозии меди и ее сплавов, стали различных марок, алюминия и его сплавов на срок 3—5 лет. Однако бумага марки ХЦА не защищает цинк и кадмий, что является наряду с относительно высокой токсичностью существенным недостатком указанного вида антикоррозионной бумаги, препятствующим ее использованию для консервации и упаковки большинства современных изделий, для которых широко используется кадмирование поверхности. Технология производства антикоррозионной бумаги ХЦА практически не отличается от таковой для бумаги марки НДА и имеет присущие последней недостатки, связанные с нанесением хромата циклогексиламина на  [c.123]

Цинк и кадмий часто хроматируют в растворах хромовой кислоты или хроматов. Хроматированный цинк в атмосфере с низкой степенью коррозионной агрессивности противостоит в течение определенного времени образованию белых продуктов коррозии, так называемой белой ржавчины.  [c.74]

Анодные металлы. Потенциал коррозии металла часто имеет более отрицательное значение, чем можно было бы ожидать из ряда ЭДС. Это относится к таким металлам, как кадмий и олово, которые в определенных условиях окружающей среды оказывают протекторную защиту стальному основному материалу. И наоборот, алюминий и цинк, являющиеся в ряду ЭДС значительно более отрицательными, чем сталь, могут иметь коррозионные потенциалы, которые сделают их катодами по отношению к стали. Изменение полярности зависит, конечно, от того, какие условия окружающей среды преобладают. В некоторых системах изменение полярности происходит в результате незначительных изменений окружающей среды.  [c.40]

Во многих случаях (например, при нанесении покрытия цинком и кадмием) металлическую поверхность, на которую нанесено покрытие, подвергают химической пассивации с целью предотвращения коррозии в умеренно агрессивной коррозионной среде. Во избежание потускнения из-за атмосферной коррозии можно использовать бесцветный лак (например, при нанесении медного покрытия).  [c.91]

Скорость коррозии кадмия под воздействием коррозионной среды обычно находится в линейном отношении ко времени, но зависит также от характера образовавшихся продуктов коррозии. Кадмий обеспечивает протекторную защиту в качестве покрытия на стали. Срок действия покрытия прямо пропорционален толщине.  [c.110]

В загрязненной атмосфере промышленных объектов покрытие толщиной 25 мкм служит защитой для стали около года, а в морской среде — до 5 лет. Причина этого различия заключается в следующем сульфат кадмия, возникающий при коррозии в загрязненной промышленными отходами атмосфере, во время дождя растворяется и смывается, а в морской среде образуются нерастворимые карбонаты и основные хлориды, кото-  [c.110]

Обычно вначале выявляют материалы, непригодные для исиоль-зования в качестве покрытий, с учетом фактора окружающей среды. Так, из-за избыточной скорости коррозии алюминий в качестве покрытия неприемлем в сильной щелочной среде, алюминий и свинец — в среде с высоким содержанием хлорида алюминия, медь и цинк — в кислотной среде. Алюминий, медь, никель и олово хорощо противостоят атмосферным воздействиям, а алюминий и никель, кроме того, — нагреванию ири повышенной температуре, но они подвержены коррозии ири ограниченном доступе кислорода. Никель, медь и олово устойчивы в пресной и морской воде, алюминий менее устойчив, особенно при высоком содержании хлоридов в воде. Во влажной среде, содержащей пары органических веществ, на цинк следует наносить покрытие кадмия. Алюминий, никель и олово имеют хорошую сопротивляемость к действию кислот. Свинец сохраняет  [c.123]


При контакте магния с другими металлами скорость коррозии магния определяется величиной перенапряжения водорода на этих металлах. Такие металлы, как железо, никель, медь, имеющие низкое перенапряжение водорода, сильно понижают коррозионную стойкость магния менее опасны контакты магния с металлами, имеющими высокое перенапряжение водорода (свинец, НИНК, кадмий).  [c.274]

В некоторых случаях титан склонен к межкристаллитной коррозии. Так, наблюдалось межкристаллитное разрушение сварных соединений титана в сернокислом растворе (12—187о серной кислоты), насыщенном сернистым газом с примесями мышьяка, двуокиси селена и окиси железа, — металл шва и зона термического влияния сварного соединения подвергались меж-кристаллнтнпй коррозии. Межкристаллитное растрескивание титана наблюдалось в красной дымящей азотной кислоте, растворах брома в метиловом спирте и в их парах. Имеются сведения о коррозионном растрескивании титана в расплавленном кадмии, в хлорированных углеводородах, а также в воздушной среде при 260° С, когда на поверхности титана имелись сухие кристаллы хлористого натрия.  [c.278]

Коррозионные потенциалы амальгам в растворах солей соответствующих металлов почти достигают значений обратимого потенциала легирующего компонента благодаря очень низкой скорости коррозии и отсутствию заметной анодной поляризации. Например, коррозионный потенциал амальгамы кадмия в растворе dS04 ближе к термодинамическому для реакции d - -f 2ё, чем для чистого кадмия в этом же растворе. Стационарная скорость коррозии чистого кадмия значительно выше, чем его амальгамы, что ведет к еще большим отклонениям измеряемого коррозионного потенциала от соответствующего термодинамического значения. Вообще говоря, стационарный потенциал любого металла, более активного, чем водород (например, железа, никеля, цинка, кадмия) в водных растворах, содержащих собственные ионы, отклоняется от истинного термодинамического значения на величину, зависящую от преобладающей скорости коррозии, которая сопровождается разрядом Н+ [17]. Измеренные значения положительнее истинных. Это справедливо также и для менее активных металлов (например медь, ртуть), которые корродируют в присутствии растворенного кислорода.  [c.64]

Подробно исследован нитрит дициклогексиламмония [44] — один из наиболее эффективных летучих ингибиторов. Это кристаллическое вещество белого цвета, почти без запаха и сравнительно нетоксичное. Давление паров при 21 °С равно 0,0133 Па, что составляет примерно одну десятую давления паров ртути . Одним граммом можно насытить примерно 550 м воздуха и сделать его мало агрессивным по отношению к стали. Это вещество медленно разлагается, однако при правильно изготовленной бумажной упаковке оно эффективно предотвращает коррозию стали при комнатной температуре в течение нескольких лет. При наличии контакта с цветными металлами его следует применять с осторожностью. Особенно сильно он ускоряет коррозию цинка, магния и кадмия.  [c.273]

Карбонат циклогексиламина имеет несколько большее давление паров (53,32 Па при 25 °С), и его пары также эффективно ингибируют коррозию стали [45]. Высокое давление паров обеспечивает более быструю защиту стальной поверхности как при изготовлении первичной упаковки, так и при необходимости вскрытия и повторного запечатывания упаковки. При проведении этих операций концентрация пара может падать ниже необходимого для защиты стали значения. Пары этого вещества уменьшают коррозию алюминия, цинка и припоя, однако не оказывают ингибирующего действия на кадмий и усиливают коррозию меди, латуни и магния.  [c.273]

Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик.  [c.351]

Фреттинг-коррозия возникает также в вакууме, в среде кислорода, азота и гелия. Интенсивность изнашивания при фреттинг-коррозии в атмосфере воздуха выше, чем в вакууме и среде азота, а в кислороде больше, чем в гелии. Отсюда следует, что интенсивность изнашивания зависит не столько от силы трения, сколько от окисления поверхностей трения и металлических продуктов разрушения. В противном случае наибольшая интенсивность изнашивания наблюдалась бы в вакууме, где силы трения максимальны. Вместе с тем на кинетику реакции окисления влияет и механический фактор, о чем свидетельствует появление при фреттинг-коррозии оксидов кадмия, отличных от ранее известных окислов этого металла. Таким образом, фрептиш -коррозия представляет собой вид разрушения металлов и сплавов в мало- и неагрессивных коррозионных средах при одновременном воздействии механических и химических факторов.  [c.139]


Применение кадмиевых покрытий ввиду высокой стоимости и дефицитности ограничено, их используют в основном в хлорсодержащих средах при условии, что значительный защитный эффект достигается при небольшой толщине слоя. В промышленной атмосфере скорость коррозии кадмия сопоставима со скоростью коррозии цинка, в приморской атмосфере тропических районов она в 1,5-2 раза ниже. Коррозионная стойкость металлических покрытий в атмосфере зависит от поверхностных защитных пленок, формирующихся на металле под действием аэрохимических и метеорологических условий, их морфологии, а также от состава продуктов коррозии, которые зависят в свою очередь от примесей в атмосфере.  [c.52]

Примеси свинца, олова я кадмия считаются вредными, так как способствуют межкристял.читной коррозии и изменению размеров, приводящих к растрескиванию изделий. В связи с этим для изготовления сплавов цинка с алюминием и медью рекомендуется применять цинк чистотой 99,99%. Положительное действие на цинковые сплавы оказывает магний в количе-  [c.388]

Применение индия определила его высокая стойкость против коррозии в среде минеральных масел и продуктов их окисления, низкий коэффициент трения и устойчивость к атмосферным воздействиям. Индиевые покрытия используются для повышения отражательной способности рефлекторов, в качестве антифрикционных покрытий и для зашиты от коррозии в специальных средах. К сожалению, индий обладает малой твердостью и узкой областью рабочих температур, в связи с этим широкое распространение получили сплавы индия, улучшающие эти свойства. Так, электролитический сплав индия со свинцом хорошо зарекомендовал себя в условиях трения без смазки. Сплав индия с таллием характеризуется сверхпроводимостью при низких температурах, сплавы нидий-кадмий, индий-цинк во много раз лучше сопротивляются коррозии, чем чистые кадмиевые или цинковые покрытия. Хорошими антифрикционными свойствами обладают и другие индиевые сплавы индий — никель, индий — кобальт, индий — серебро. Ценными свойствами обладает сплав индий — палладий. Индиевые покрытия можно получить из различных электролитов цианистых, сернокислых, сульфаматных, тартратных, борфтористоводородных. Составы наиболее употребляемых электролитов приведены в табл. 33.  [c.79]

Припои на основе Ag и Си. Серебряные припои содержат медь, цинк, кадмий известны прппои, содержащие также золото. Температурный интервал пайки этих припоев 600—1000° С. Содержание серебра колеблется 6т 25 до 70%. В качестве примера мол<но указать на припой ПСр40, в состав которого помимо серебра входит Си (16,7%), Zn (17%) и Сс1 (26%) его Т = 595 620° С. Все эти припои отличаются прочностью, высокой пластичностью, стойкостью к коррозии. Медные припои содержат легирующие элементы, образующие низкотемпературные эвтектики меди с фосфором при 707° С, с серебром при 779° С. Для снижения температуры плавления к припою добавляют олово и цинк. Медно-фосфористый припой МФ1 с содержанием 10% фосфора имеет. Т л = 714 850° С. Для пайки латуни применяют медно-цинковые припои с содержанием 50—60% Си. Их температура плавления составляет 850—940° С. В качестве флюсов для указанных припоев применяют, в основном смеси плавленой буры ЫагВ40, и борной кислоты. Бура плавится при 743° С для активирования в состав вводят фториды.  [c.283]

Контактно выделившийся металл не образует сплошного покрытия, а присутствует на поверхности в виде отдельных островков типа коралловых атоллов с просветами между ними, частично заполненными единичными адатомами. Подобная картина наблюдается и при контактном выделении ряда других металлов — кадмия, свинца, таллия. Такой осадок не создает замкнутых препятствий анодному растворению основного металла, повышая в то же время перенапряжение водорода. В соответствии с этим падает и скорость коррозии  [c.85]

Кристаллическое вещество ярко-желтого цвета. Температура плавления 127° С. Содержание основного вещества не менее 98%, pH 1%-ного водного раствора — 7,5—8,5. Растворимость ингибитора при 25° С в воде — 4,0, этаноле—1,0 г/100 г. Защищает от коррозии изделия из стали, чугуна, никеля, алюминия и его сплавов, серебра. Не защищает цинк, кадмий, магний и его сплавы. Воздействует на текстиль, дерево, пластик, бумагу, вызывает изменения окраски  [c.106]

Морская вода содержит большое количество солей, главным образом хлориды, и имеет довольно высокую электропроводность. Эгим обстоятельством объясняется электрохимический характер коррозионных процессов в морской воде и пленке морской воды, образующейся на металлических конструкциях в воздухе. При наличии значительной концентрации хлорид-ионов и растворенного кислорода больишнство технически важных металлов (магний, алюминий и их сплавы, цинк, кадмий, коррозионностойкие и конструкционные стали могут переходить в состояние пробоя и подвергаться питтинговой коррозии.  [c.42]

Развитие коррозии под напряжением в зоне очага разрушения обусловливает наличие там специфических продуктов коррозии. Так, выполненный на установке УРС-60 в излучении железного анода рентгенофазовый анализ отложений на стенках трещин разрушений в ряде случаев выявил магнетит и сульфиды железа, являющиеся результатом коррозионного взаимодействия механически активированной трубной стали 17ГС с высокосернистой арлаи-ской нефтью. Наличие магнетита указывает на образование коррозионных трещин без доступа кислорода воздуха. Сульфиды железа на поверхности излома были выявлены при воздействии концентрированного раствора азотнокислого кадмия, подкисленного соляной кислотой. О их присутствии свидетельствует желтая окраска, обусловленная наличием сульфида кадмия.  [c.228]


Смотреть страницы где упоминается термин Кадмий, коррозия : [c.1242]    [c.8]    [c.590]    [c.248]    [c.281]    [c.201]    [c.296]    [c.120]    [c.126]    [c.44]    [c.405]    [c.183]    [c.104]    [c.110]   
Морская коррозия (1983) -- [ c.167 , c.168 ]



ПОИСК



Кадмий

Кадмий скорость коррозии

Кадмий, зависимость коррозии

Коррозия цинка и кадмия



© 2025 Mash-xxl.info Реклама на сайте