Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

РАСПРОСТРАНЕНИЕ СВЕТА В ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ СРЕДАХ

РАСПРОСТРАНЕНИЕ СВЕТА В ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ СРЕДАХ  [c.3]

Распространение света в изотропных и анизотропных средах  [c.6]

Распространение света в оптически изотропной и анизотропной средах  [c.250]

Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]


Например, при изучении распространения света в кристаллах (т. е. в задачах кристаллооптики) можно в большинстве случаев считать среду магнитно-изотропной, но электрически анизотропной. При этом вектор напряженности электрического поля Е и вектор электрической индукции 1>, вообще говоря, не будут параллельны. Связь между ними осуществляется посредством тензорной величины — диэлектрической проницаемости Если поместить точечный источник в оптически однородную изотропную среду, то фронт волны, создаваемой таким источником, будет иметь сферическую форму. Форма же волнового фронта в анизотропной среде отлична от сферической и бывает весьма сложной.  [c.103]

Оптически анизотропия среды характеризуется различной по разным направлениям способностью среды реагировать на действие падающего света. Реакция эта состоит в смещении электрических зарядов под действием поля световой волны. Для оптически анизотропных сред величина смещения в поле данной напряженности зависит от направления, т. е. диэлектрическая проницаемость, а следовательно, и показатель преломления среды различны для разных направлений электрического вектора световой волны. Другими словами, показатель преломления, а следовательно, и скорость света зависят от направления распространения световой волны и плоскости ее поляризации. Поэтому для анизотропной среды волновая поверхность, т. е. поверхность, до которой распространяется за время t световое возбуждение, исходящее из точки L, отлична от сферической, характерной для изотропной среды, где скорость распространения V не зависит от направления.  [c.497]

При обобщении построений Гюйгенса на случай анизотропной одноосной среды для вторичных волн нужно использовать найденные в 4.2 поверхности лучевых скоростей. Касательная к ним плоскость дает положение фронта (т. е. поверхности равных фаз) преломленной волны, а прямая, проведенная из центра вторичной волны в точку касания, — направление преломленного луча. Так как лучевая поверхность состоит из сферы и эллипсоида, то построение Гюйгенса дает два луча обыкновенный, направление которого совпадает с нормалью к фронту, как и в изотропной среде, и необыкновенный, направление которого в общем случае отклоняется от нормали к фронту необыкновенной волны. Для строгого обоснования построений Гюйгенса (которое здесь не приводится) требуется показать, что распространение света от точечного источ ника по некоторому направлению в анизотропной среде происходит так же, как и рассмотренных в 4.2 плоских волн, скорости кото рых по разным направлениям характеризуются лучевыми поверхностями.  [c.189]


Когда речь идет о направлении распространения света, то имеют в виду два различных понятия направление распространения энергии волны и направление распространения волнового фронта. Оба направления тождественно совпадают в изотропной среде, в которой волновой фронт от точечного источника является сферическим и нормаль к нему совпадает с лучом, т. е. с радиусом-вектором соответствующей точки волнового фронта. Поэтому в оптике изотропных сред пользуются обоими терминами и понятиями как равноценными. Иначе обстоит дело в оптике анизотропных сред, когда волновые фронты не являются сферическими. Для несферического волнового фронта радиус-  [c.84]

Эти уравнения для волновых амплитуд принято называть уравнениями генерации . Для их вывода мы до сих пор ограничивались изотропной средой и волнами с одним направлением поляризации. Однако обычно в приложениях важную роль играют также анизотропные вещества, поскольку в них нелинейные эффекты проявляются уже во втором порядке. Кроме того, как в изотропных, так и в анизотропных веществах наблюдаются эффекты, в которых большое участие принимают компоненты поля с различными направлениями поляризации. В этих общих случаях система уравнений генерации сложным образом зависит от направлений распространения и поляризации отдельных волн. В дальнейшем мы сделаем упрощающие предположения, при которых уравнения генерации для компонент Е. будут подобны уравнениям для изотропной среды при фиксированном направлении поляризации. Вновь предположим, что волновые векторы всех участвующих в процессе волн имеют одно и то же направление, за которое мы выберем ось г лабораторной системы координат. Этого можно достичь, если направить излучение перпендикулярно к соответствующим образом вырезанной поверхности кристалла. Кроме того, мы ограничимся оптически одноосными кристаллами и расположим ось у лабораторной системы координат в плоскости главного сечения, т. е. в плоскости, образуемой направлением распространения луча и оптической осью. Ось х перпендикулярна этой плоскости. При таком выборе осей. -компонента волны с частотой I распространяется как обыкновенная водна с волновым числом = <7о (Л, а /-компонента — как необыкновенная волна с волновым числом ао /) . (Мы обозначаем через волновое число света с направлением поляризации .) Наконец, мы сделаем достаточно часто выполняющееся предположение, что эллипсоид линейного показателя преломления мало отклоняется от сферической формы. При этом предположении оказывается возможным во многих случаях пренебречь  [c.101]

Решение различных задач о распространении С. может быть осуществлено при помощи уравнения (3) при соответственном задании граничных и начальных условий. В частности из уравнения (3) выводятся вспомогательные принципы оптики, принцип Гюйгенса, принцип Ферма, принцип прямолинейного распространения С. для однородной среды и различные другие положения геометрической оптики (см. Гюйгенса принцип, Ферма принцип). Явления, наблюдаемые при отражении, рассеянии, распространении С. в анизотропных средах, доказывают для всей шкалы светового спектра поперечность световых возмущений (см. Поляризация света). Световые колебания в изотропной среде происходят в плоскости, перпендикулярной к линии распространения. Свойства электромагнитных волн, излучаемых искусственными электрическими системами—радиостанциями (см.), вибраторами Герца (см.),— вполне совпадают с перечисленными свойствами С., т. е. распространяются с той же скоростью, поперечны и описываются ур-ием (3). На этом основании и по косвенным подтверждениям, получаемым из явлений взаимодействия С. и вещества, можно утверждать, что природа любых световых волн электромагнитная. При этом световой вектор, определяющий действия С. на вещество, есть вектор электрический, что доказано опытами со стоячими световыми волнами при фотохимическом действии (Винер) и при возбуждении флуоресценции (Друде и Нернст).  [c.146]


Обычно в учебниках встречается утверждение, что законы преломления не приложимы к необыкновенному лучу в одноосном кристалле и к обоим лучам в двуосном. Это — правильное утверждение, но оно имеет чисто отрицательный характер, показывая, что простое построение, предписываемое законом преломления, не при-ложимо к решению задачи о направлении распространения светового луча. Если взамен не дается никаких правил, то решение даже весьма простых вопросов кристаллооптики оказывается затруднительным. Между тем существует гораздо более общий прием отыскания направления распространения преломленной световой волны, а именно, построение, основанное на принципе Гюйгенса, следствием которого для изотропной среды является закон преломления Декарта — Снеллия. Напомним, что сам Гюйгенс рассматривал при по.мо-щн этого приема вопрос о распространении света в двоякопрелом-ляющих телах (исландский шпат) и получил крайне важные результаты. Применение построения Гюйгенса является простым и действенным средством для разбора вопроса о распространении света в анизотропных средах. Поверхность, фигурирующая в построении Гюйгенса, есть, очевидно, лучевая поверхность, а не поверхность нормалей. Действительно, по правилу Гюйгенса для получения фронта (плоской) волны проводят плоскость, касательную к поверхности Гюйгенса. А фронт волны тсателен именно к лучевой поверхности (рис. 26.11, а) и пересекает поверхность нормалей (рис. 26.11, б).  [c.509]

СПОСОБНОСТЬ [вращательная — отношение угла поворота плоскости поляризации света к расстоянию, пройденному светом в оптически активной среде излучательная — отношение светового потока, испускаемого светящейся поверхностью, к площади этой поверхности и к интервалу частот, в котором содержится излучение отражательная — отношение отраженной телом энергии к полной энергии падающих на него электромагнитных волн в единичном интервале частот поглощательная— отношение поглощенного телом потока энергии электромагнитного излучения в некотором интервале частот к потоку энергии падающего на него электромагнит-, ного излучения в том же интервале частот разрешающая прибора — характеристика способности прибора (оптического давать раздельные изображения двух близких друг к другу точек объекта спектрального давать раздельные изображения двух близких друг к другу по длинам волн спектральных линий) тормозная — отношение энергии, теряемой ионизирующей частицей на некотором участке пути в веществе, к длине этого участка пути] СРЕДА [есть общее наименование физических объектов, в которых движутся тела или частицы и распространяются волны активная — вещество, в котором осуществлена инверсия населенностей уровней энергии и в результате чего может быть достигнуто усиление электромагнитных волн при их прохождении через вещество анизотропная — вещество, физические свойства которого неодинаковы по различным направлениям гнротронная — среда, в которой существует естественная или искусственная оптическая активность диспергирующая — вещество, фазовая скорость распространения волн в котором зависит от их частоты изотропная — вещество, физические свойства которого одинаковы по всем выбранным в нем направлениям конденсированная—твердая или жидкая среда]  [c.279]

Акустооптичеекое взаимодействие в оптических волноводах. В оптич. волповодах, представляющих собой тонкий слой прозрачного материала на поверхности подложки (т. н. планарные волноводы), возникает взаимодействие оптич. волноводных мод с поверхности ными акустическими волнами (ПАВ), обычно рэлеев-скими. В результате появляется свет, распространяющийся вдоль плоскости волновода, но отклонённый от своего первоначального направления. Для эфф. дифракции необходимо, чтобы в н.поскости волновода световые лучи падали на пучок ПАВ под соответствующим брэгговским углом. Поскольку даже в изотропной волноводной системе скорости распространения разных оптич. мод отличны друг от друга, то при разл. углах падения светового пучка возможна как дифракция света без изменения номера моды, аналогичная обычной брэгговской дифракции, так и дифракция, при к-рой падающий и дифрагированный свет принадлежит к разным волноводным модам. В последнем случае законы дифракции аналогичны закономерностям анизотропной дифракции, возникающей при взаимодействии объемных волн в двулуче-преломляющей среде. В волноводных системах распределение как эл.-магн. полей для оптич. моды, так и поля деформации в ПАВ неоднородно в поперечном сечении волновода. Эффективность акустооптич. диф-  [c.49]

Дифракция света на УЗ в анизотропной среде. В анизотропных средах взаимодействовать со звуком может не только обыкновенный луч, подчиняющийся обычным законам оптики изотропных сред, но и необыкновенный, показатель преломления к-рого зависит от направления распространения света относительно оптич. оси кристалла. Упругооптич. эффект при определённых условиях приводит к тому, что дифрагированный свет, возникающий в результате взаимодействия со звуком обыкновенного луча, оказывается необыкновенным, и наоборот. Геометрич. условия Д. с. на у. в этом случае из-за различия фазовых ско-  [c.129]


Смотреть страницы где упоминается термин РАСПРОСТРАНЕНИЕ СВЕТА В ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ СРЕДАХ : [c.17]    [c.321]    [c.644]    [c.30]    [c.105]    [c.28]    [c.93]   
Смотреть главы в:

Оптика. Т.2  -> РАСПРОСТРАНЕНИЕ СВЕТА В ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ СРЕДАХ



ПОИСК



Анизотропность

Изотропность

Изотропность среды

Распространение света в анизотропных средах

Свет Распространение в средах

Среда анизотропная

Среда изотропная



© 2025 Mash-xxl.info Реклама на сайте