Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения тела переменного состава

УРАВНЕНИЯ ДВИЖЕНИЯ ТЕЛА ПЕРЕМЕННОГО СОСТАВА 223-  [c.223]

Уравнения движения тела переменного состава 263  [c.263]

Вращение вокруг неподвижной оси. Пусть Oz — неподвижная ось, вокруг которой вращается тело переменного состава. Тогда р = О, = О, г = о г(0 получения уравнения движения тела спроектируем обе части векторного уравнения (8) на ось Oz, Получим  [c.265]

Литвин-Седой М. 3., Уравнения движения основного тела системы твердых тел переменного состава, Докл. АН СССР, 142, № 2, 289—291 (1962).  [c.201]


Из сказанного ясно, что, пользуясь девятью направляющими косинусами как обобщенными координатами, нельзя получить лагранжиан и составить с его помощью уравнения движения. Для этой цели мы должны использовать не сами эти косинусы, а некоторую систему трех независимых функций этих косинусов. Некоторые такие системы независимых переменных, из которых наиболее важной является система углов Эйлера, будут описаны нами позже. Однако применение направляющих косинусов для описания связи между двумя декартовыми системами координат имеет ряд собственных важных преимуществ. Так, например, многие теоремы о движении твердых тел можно получить с их помощью весьма изящным и общим способом, притом в форме, встречающейся в специальной теории относительности и в квантовой механике. Поэтому этот метод заслуживает более подробного изложения.  [c.113]

Исторически первые задачи такого рода исследовались при помощи основных теорем механики системы материальных точек постоянной массы. Каждая новая задача требовала при таком подходе своеобразных и достаточно сложных рассуждений. Отсутствие единого мощного метода всегда требует от исследователя особой проницательности и остроумия при изучении даже простых частных задач. Выделение из механической системы одного тела, движение которого требуется изучить, правильный учет взаимодействий (ударов), обусловленных процессами присоединения и отбрасывания, позволяют составить векторное дифференциальное уравнение, выражающее обобщенный закон динамики тел переменной массы.  [c.59]

Все приведенные выше уравнения движения твердого тела могут быть записаны и в форме уравнений Лагранжа. Чтобы составить уравнения Лагранжа второго рода, следует определить кинетическую энергию тела, обобщенный потенциал и диссипативные силы как функции независимых переменных. Используя соотношения (4.64), (8.4) и учитывая, что Г =0, найдем  [c.342]

При понижении порядка системы дифференциальных уравнений проблемы трех тел до четырех можно использовать произвольные канонические переменные р. Необходимо только выразить через эти переменные интегралы площадей, и понижение порядка будет выполняться с большими или меньшими затруднениями таким же путем, как и выше. Автор показал, как можно составить канонические уравнения движения с тремя степенями свободы для случая плоского движения, если в качестве дг-коорди-нат использовать расстояния трех тел от общего центра инерции при надлежащем выборе соответствующих канонических переменных [321. Этот метод имеет свои преимущества, так как возмущающая функция оказывается алгебраической функцией переменных, в то время как оскулирующие элементы входят в возмущающую функцию трансцендентным образом. Эти преимущества достигаются и в том случае, когда вместо расстояний трех тел от общего центра инерции в качестве координат выбираются взаимные расстояния. Вывод дифференциальных уравнений оказывается точно таким же, что и при использовании в качестве обобщенных координат расстояний от центра инерции. Понижение порядка системы дифференциальных уравнений движения в этом случае до восьмого в изящной форме было выполнено Брунсом [33].  [c.230]


Первые серьезные теоретические поиски в этих областях принадлежат Д. Бернулли и Л. Эйлеру (середина XVIII в.). Эйлер вывел уравнение поступательного движения объекта переменной массы (криволинейной трубки, по которой протекает несжимаемая жидкость движение считается одномерным) и уравнение вращательного движения тела переменного состава (турбины) около неподвижной оси. В течение полутораста лет специалисты по расчету действия гидравлических турбин и водометных движителей в десятках работ и исследований не смогли превзойти всеми забытые результаты Эйлера. Помимо того что он вывел названные типы уравнений движения тел переменной массы, он дал множество полезных рекомендаций для проектирования таких гидравлических двигателей и, самое главное, получил выра-  [c.226]

Вращение вокруг неподвижной оси. Пусть Oz—неподвижная ось, BOf pyr которой вращается тело переменного состава. Тогда /J = О, g = О, г= (1)г(<). Для получения уравнения движения тела спроектнруем обе части векторного уравнения (8) па ось Oz. Г1о-JJ учи м  [c.224]

Пусть твердое тело переменного состава имеет одну неподвижную точку О. Для получения дифференциальных уравнений движения тела воспользуемся теоремой об изменении кинетического момента системы переменного состава. Пусть система координат Oxyz жестко связана с телом, а Ко — кинетический момент тела относительно точки О. Если о — угловая скорость тела, то из равенства (7) п. 131 получаем  [c.263]

В статье В. М. Карагодина Некоторые вопросы механики тела переменной массы (1956) и в его монографии Теоретические основы механики тела переменного состава (1963) дано обобщение теоремы Кенига на случай тела переменной массы, центр инерции которого и процессе движения самого тела перемещается с некоторой скоростью по отношению к точкам тела, и сформулирована для этого случая теорема о кинетической энергии тела переменной массы. Там же дано обобщение уравнений Эйлера на случай тела переменной массы с переменными моментами инерции, когда центр масс перемещается внутри тела, а центральная система осей координат вращается по отпошению к телу с определенной угловой скоростью.  [c.305]

В XVIII в. очень интересное исследование проблемы внутренней баллистики было проведено Ж. Лагранжем Он составил дифференциальные уравнения движения орудия, снаряда и пороховых газов внутри канала ствола. Откат орудия представлял собой пример реактивного движения тела переменной массы.  [c.228]

ТуЕ] 1 3 рис. 6.9. Но дело в том, что / — момент инерции ракеты относительно поперечной оси зависит от времени. Поэтому, для того чтобы составить уравненне вращательного движения в этом простейшем случае, необходимо предварительно проделать онерацип, подобные те.м, которые производились нами ранее при выводе уравнения поступательного движения тела переменной Ma iji.  [c.244]

В теме Связи и их уравнения следует дать характеристику неидеальных связей, при этом обратить внимание на тот важнейший и фундаментальный факт, что при трении обязательно имеет место деформа ция зоны фрикционного контакта. Особенно наглядно это проявляется при скольжении твердых тел по грунтам и другим дисперсным средам, по полимерам, при прокатке, уплотнении, перемепшвании и других технологических процессах. Так как в общем случае при скольжении имеет место перемещение определенных масс в зоне фрикционного контакта, не учитывать этот важнейший факт никоим образом нельзя. Поэтому рекомендуется рассмотреть случай движения твердого тела по деформируемому основанию с учетом реологии фрикционного контакта и перемещения совместно с твердым телом масс переменного состава менее прочного контртела. Удобно это изложить в дополнительных вопросах динамики в теме Механика тела переменной массы , в которой дать вывод дифференциального уравнения движения твердого тела с учетом нестационарных процессов в зоне фрикционного контакта [ 7]. Рассмотрение этого дифференциального уравнения в общем случае позволяет проиллюстрировать методы снижения сил трения.  [c.97]



Смотреть главы в:

Теоретическая механика  -> Уравнения движения тела переменного состава

Теоретическая механика  -> Уравнения движения тела переменного состава



ПОИСК



Движение переменное



© 2025 Mash-xxl.info Реклама на сайте