Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Процесс термодинамический необратимый обратимый

Отсюда следует, что в системах, находящихся при постоянной температуре и постоянном давлении, обратимые процессы протекают при постоянной величине изобарно-изотермического потенциала. При протекании в системе необратимых процессов термодинамический потенциал всегда уменьшается.  [c.148]

Термодинамические процессы следует разделять на обратимые и необратимые. Обратимым процессом называется такой процесс, который, будучи проведенным в прямом и обратном направлениях, не оставляет никаких изменений в окружающей среде. Обратимый процесс можно рассматривать как сумму бесконечно близких равновесий, когда бесконечно малое изменение параметров (внешних условий) может изменить направление процесса. Поэтому истинно обратимый процесс может совершаться только с бесконечно малой скоростью, с тем чтобы соблюдалось условие равновесия или обратимости.  [c.252]


Термодинамика — феноменологическая наука о превращениях энергии тел. 1.2. Основные понятия. 1.3. Термодинамический процесс. 1.4. Работа и теплота процесса. 1.5. Обратимые и необратимые процессы.  [c.6]

Термодинамический анализ обратимых и необратимых процессов. Термодинамический анализ основывается на первом и втором началах термодинамики, из которых математическим путем выводятся относящиеся к рассматриваемому явлению закономерности. Эти частные закономерности столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики. Если учесть, что термодинамический метод может применяться к самым разнообразным явлениям, то станет вполне очевидна общность этого метода.  [c.158]

Термодинамические процессы подразделяются на обратимые и необратимые.  [c.25]

Большое значение в термодинамике имеет понятие обратимого термодинамического процесса после такого процесса термодинамическая система и окружающая среда могут возвратиться в начальное состояние. Возвращение в начальное состояние окружающей среды означает, что для осуществления обратного процесса не понадобилась компенсация. Более детально обратимый процесс можно представить себе следующим образом а) система должна пройти в прямом и обратном направлениях через одни и те же состояния б) после прямого и обратного процессов ни в системе, ни в окружающей среде не должно быть остаточных изменений. Если хотя бы одно из этих условий не выполняется, процесс является необратимым.  [c.46]

Термодинамические процессы бывают обратимые и необратимые. Обратимым термодинамическим процессом называют процесс, допускающий возвращение рабочего тела в первоначальное состояние без того, чтобы в окружающей среде произошли какие-либо изменения. Невыполнение этого условия делает процесс необратимым. Любой процесс сопровождается энергетическими превращениями.  [c.8]

Если регенерация отсутствует, эти произвольные процессы протекают необратимо. На фиг. 2 представлен такой термодинамический цикл. При полной идеальной регенерации выбранные произвольные процессы 2—3 и 4—1 полностью обратимы.  [c.15]

Термодинамически обратимыми называются процессы изменения состояния рабочего тела, которые могут быть проведены в обратном направлении таким образом, что и само рабочее тело, и окружающая среда пройдут через те же промежуточные состояния, что и в прямом направлении, но лишь в обратной последовательности. В противном случае процессы являются термодинамически необратимыми.  [c.51]


Обратимыми называются такие процессы, в результате совершения которых в прямом и обратном направлениях термодинамическая система приходит в исходное состояние и при этом не происходит никаких изменений в окружающей среде. Все остальные процессы являются необратимыми.  [c.113]

Если две системы, температуры которых различаются на конечную величину, привести в тепловой контакт друг с другом, не нарушая изоляции от окружающих тел, то такая объединенная система в течение некоторого времени будет проходить через определенную последовательность допустимых неравновесных со-стояний. Будучи изолированной, такая система в конечном итоге перейдет в некоторое устойчивое состояние. Из предварительного обсуждения природы необратимости (разд. 2.14) можно заключить, что перенос тепла между двумя телами, находящимися при разных температурах, есть необратимый процесс, точно так же как необратимым является процесс затухания движения жидкости, вызванного действием мешалки. Это обстоятельство чрезвычайно важно с прикладной точки зрения, поскольку, как было показано в разд. 2.14, необратимость влечет за собой потерю возможностей совершения работы или увеличение количества потребляемой работы по сравнению с идеальным случаем. Этот вопрос будет изучен подробнее после того, как в гл. 9 мы обсудим понятия о термодинамической необратимости и обратимости.  [c.79]

Увеличение энтропии при переходе системы между двумя заданными устойчивыми состояниями связано с возрастанием случайности или неупорядоченности системы, хотя правильно понять это можно лишь в рамках статистической термодинамики, рассматривающей происходящие в системе события на микроскопическом уровне. Таким образом, непосредственная связь между потерянной работой и образованием энтропии является следствием того факта, что максимально возможную работу можно совершить лишь в полностью упорядоченном процессе. Иначе говоря, система должна проходить через последовательность устойчивых состояний, а значит, процесс должен быть обратимым. Следовательно, потеря работы в необратимом процессе обусловлена невозможностью поддержания полной упорядоченности при переходе системы из одного энергетического состояния в другое. Поэтому неудивительно, что потерянная работа (или диссипация, как ее называют при некоторых условиях) непосредственно связана с образованием энтропии в данном процессе. В рамках теоретико-информационного подхода к статистической термодинамике [16] потерянная работа оказывается в прямой связи с потерей термодинамической информации, или с возрастанием неопределенности вследствие необратимости рассматриваемого процесса. Так, поскольку в необратимом процессе система не  [c.252]

Термодинамические процессы могут быть обратимыми и не- обратимыми. Обратимым называют равновесный процесс, который протекает в прямом и обратном направлениях через один и тот же ряд равновесных состояний, не вызывая изменений в самом газе и в телах, окружающих систему. Неравновесные процессы необратимы. Все действительные процессы, встречающиеся в теплотехнике, практически необратимы. Изучение этих процессов может быть приведено при некоторых условиях к изучению обратимых процессов с достаточной для практики точностью.  [c.98]

Циклы, так же как и разомкнутые термодинамические процессы, могут быть обратимыми и необратимыми. Для необратимости цикла в целом достаточно, чтобы процесс протекал необратимо хотя бы на части цикла.  [c.74]

Термодинамический процесс может быть обратимым или необратимым. Обратимый процесс происходит тогда, когда возможно возвращение к начальному состоянию системы и окружающей среды. Процесс, который не удовлетворяет этим условиям, является необратимым процессом. В принципе мы имеем дело с необратимыми процессами обратимый процесс является идеализацией реального процесса.  [c.69]

Если математическое выражение принципа существования энтропии известно лишь для условий обратимого изменения состояния контрольного тела II), то в последующих построениях должно быть принято, что контрольное тело II) совершает обратимые процессы, но при этом исследуемое тело (/) совершает любые равновесные процессы — обратимые или необратимые, заданные любым контуром или точками Л, В, С и др. (рис. 19). Таким путем достигается обобщение любого частного выражения принципа существования энтропии (простейшие термодинамические системы, обратимые процессы) до уровня второго начала термостатики, как общего математического выражения принципа существования абсолютной температуры и энтропии для любых равновесных систем в условиях любых термодинамических процессов — обратимых и необратимых.  [c.58]


Многовековая практика развития человечества показывает, что все естественные самопроизвольные процессы в природе необратимы. Обратимых процессов в природе нет если тело переходит из состояния 1 в состояние 2, его уже нельзя по тому же пути перевести обратно из состояния 2 в состояние 1. Необратим процесс образования растворов или какой-либо смеси. Например, после образования смеси ее компоненты уже не отделятся друг от друга. Причиной, вызывающей необратимость любых механических процессов, как известно, является трение. Поэтому эффективная (полезная) внешняя работа / .2 всегда меньше обратимой термодинамической работы А.2 ( 1.2) на величину необратимых потерь работы ка  [c.39]

В термодинамическом смысле обратимым называется процесс, который можно провести не только в прямом, но и в обратном направлении так, что сама система и окружающая ее среда возвратятся в первоначальное состояние. В природе вполне обратимых термодинамических процессов нет, так как всегда есть источники необратимости в виде трения, превращения электрической, световой и других видов энергии в теплоту. Поэтому вполне обратимые термодинамические процессы — это абстракция, идеальные предельные случаи реальных процессов.  [c.169]

Из неравенства Клаузиуса — Дюгема (6.2.57) и взаимосвязей, присущих термодинамике сплошных сред, можно заключить, что в достаточно общем случае возможны термодинамически необратимые процессы, связанные с (вязкая диссипация), с (диссипативный вклад из-за наличия поля анизотропии, вследствие того что ц не вморожено в материал, m 0 это —некоторый род вращательной вязкости), с (диссипативный вклад из-за спин-спиновых взаимодействий согласно физическому смыслу, приданному полевой величине J), с / (электропроводность) и с q (теплопроводность). Здесь мы рассмотрим только линейные необратимые процессы и с точки зрения приложений, рассматриваемых далее в этой главе, фактически выбросим последние два эффекта, а также диссипацию за счет экспериментальные свидетельства для которой не так надежны, как для других эффектов. Будем отмечать термодинамически обратимые части величин правым верхним индексом D. Б частности,  [c.368]

Термодинамическая равновесность, обратимые и необратимые процессы  [c.212]

Всякий термодинамический процесс, не удовлетворяющий условиям обратимости (п. Г), называется необратимым термодинамическим процессом. Все реальные процессы протекают не бесконечно медленно, а с конечной скоростью. Все они сопровождаются трением (1.2.10.Г), диффузией (И.1.3.Г) и теплообменом (11.4.3.Г) при конечной разности температур тела (системы) и внешней среды. Поэтому все реальные процессы являются неравновесными (11.3.2.3°). Следовательно, все реальные процессы являются необратимыми.  [c.146]

Строго говоря, необратимые процессы нельзя изобразить графически, так как уравнение состояния рУ = ЯТ нельзя применять для неравновесных состояний. Однако опыт показывает, что при расчетах тепловых установок можно пренебречь неравновесностью состояний без грубых погрешностей и, принимая в качестве давления и температуры газа некоторые средние величины по объему, рассчитывать по ним термодинамические процессы. Результаты исследований обратимых процессов дают возможность выявить условия наивыгоднейшего проведения реальных процессов. Поэтому действительные необратимые процессы изучают, заменяя их такими обратимыми процессами, которые приводят к одинаковым с необратимыми конечным состояниям рабочего тела.  [c.24]

В качестве информативной величины термодинамического совершенства поверхности теплообменного аппарата может быть использовано понятие ее КПД, определяемого с учетом параметров подобия Нуссельта и Эйлера. Следует отметить, что отношение параметра Эйлера к параметру Нуссельта будет характеризовать степень термодинамической необратимости процесса, т. е. степень отклонения реального процесса от обратимого изобарического. Минимальные значения необратимости процесса одновременно можно использовать и как дополнительные условия к выбору и обоснованию оптимальных скоростей теплоносителей по газовоздушным трактам регенератора.  [c.123]

Второй закон термодинамики утверждает, что суш,ествует аддитивная функция состояния термодинамической системы — энтропия. При обратимых процессах в адиабатически изолированной системе ее энтропия не изменяется, а при необратимых — увеличивается. В отличие от энергии значения энтропии изолированной системы зависят, следовательно, от характера происходящих в ней процессов в ходе релаксации энтропия изолированной системы должна возрастать, достигая максимального значения при равновесии. Выясним количественную меру энтропии, вытекающую из приведенной выше формулировки второго закона.  [c.50]

Помимо химических реакций необратимыми могут быть и любые другие процессы, однако гомогенные химические реакции являются особенностью, так как их протекание внутри системы необязательно сопровождается нарушением ее однородности. В случаях иных необратимых процессов в системе, вызванных теплопередачей, работой или массообменом, как легко заметить, должны всегда существовать градиенты хотя бы одной из термодинамических сил Т, X или ц, т. е. система должна быть неоднородной. В (7.18) такие градиенты не представлены в это уравнение входят термодинамические силы, единые для всей системы, т. е. очевидно, что за основу принята модель, согласно которой необратимые процессы е нарушают гомогенности системы и в каждый момент времени она находится в состоянии, однозначно характеризующимся переменными S, v, п. Поэтому было бы неправильно полагать, что применимость ура(внения (7.18) ограничивается обратимыми процессами его можно использовать при любых процессах внутри системы. Более того, оно автоматически учитывает и некоторые необратимые изменения состояния, происходящие за счет процессов  [c.71]


Когда в термодинамике при обычных условиях используется представление об обратимых процессах, то предполагается, что хотя при всех реальных термодинамических процессах и имеются необратимые изменения, но они малы и получаемые при этом результаты справедливы и в пределе полностью обратимых процессов. В цикле Нернста такая абстракция невозможна, поскольку сколь угодно малая степень необратимости уводит систему с нулевой изотермы.  [c.164]

При изучении тепловых машин большое значение имеют круговые процессы, или циклы. Циклами называются замкнутые термодинамические процессы, в ходе которых рабочее тело, пройд,я целый ряд состояний, возвращается в первоначальное. Цикл, состоящий из обратимых процессов, называется обратимым циклом. Если один из процессов, входящий в цикл, необратим, то цикл называется необратимым. Так как в результате совершения цикла газ приходит в начальное состояние, то изменение внутренней энергии за цикл равно нулю AU = 0.  [c.49]

При изучении движения в упругих телах мы до сих пор считали, что процесс деформирования происходит обратимым образом. В действительности процесс термодинамически обратим, только если он происходит с бесконечно малой скоростью, так что в каждый данный момент в теле успевает установиться состояние термодинамического равновесия. Реальное движение происходит, однако, с конечной скоростью, тело не находится в каждый данный момент в равновесии, и поэтому в нем происходят процессы, съремящиеся привести его в равновесное состояние. Наличие этих процессов и приводит к необратимости движения, проявляющейся, в частности, в диссипации механической энергии, переходящей в конце концов в тепло ).  [c.177]

Это соотношение называется первым соотношение.м Томсона. Теплота Томсона может быть положительной и отрицательной в зависимости от знака (/, gradT). При изменении направления или только /, или только grad Т на противоположное величина <7г меняет знак. По этой причине эффект Томсона иногда называют обратимым. Необходимо, однако, иметь в виду, что эта обратимость не имеет никакого отношения к тому понятию обратимости, которое вводится на основании второго начала термодинамики. В этом термодинамическом понимании обратимости и необратимости явление Томсона является необратимым, так как представляет собой часть процесса, неразрывно связанного с такими необратимыми явлениями, как теплопроводность и выделение теплоты.  [c.26]

Это соотношение, охватываюш,ее первый и второй законы термодинамики, называют термодинамическим тождеством. Все выведенные уравнения применимы для обратимых циклов и процессов. Для необратимых циклов имеется выражение  [c.74]

Уравнение (2.51) было выведено ранее для обратимых процессов. В действительности оно может быть распространено и на некоторые необратимые процессы, например, на процессы, происходящие не бесконечно медленно, но с некоторой конечной скоростью, если только учитывать диссипацию энергии движения, т. е. изменение энтропии при изменении состояния системы в результате действия сил внутреннего трения, теплопроводности и диффузии (подробнее об >том см. гл. 10). Е1следствие этого, и при условии, что и, 1, 8, Т, А/, йу имеют вполне определенные значения при рассматриваемых необратимых процессах, термодинамическое тождество (2.73) может применяться и к необратимым процессам, если только степень необратимости их не очень велика (при этом давление р надо заменить на р ).  [c.73]

Необходимо иметь в виду, что выведенный нами термический к. п. д. цикла Карно относится к обратимому круговому процессу, состоящему из обратимых термодинамических процессов. Необратимость процесса связана с потерей работы, и поэтому термический к. п. д. необрати-  [c.61]

При изучеиии движения упругой жидкости можно считать, что любой, сколь угодно малый объем движущегося рабочего тела находится в термодинамическом равновесии и характеризуется определенными значениями параметров. Параметры (в общем случае все параметры) непрерывно изменяются при переходе от одного сечения канала к смежному. При сделанном допущении и при отсутствии сил трения процесс непрерывного течения жидкости будет равновесным и, следовательно, обратимым. При течении с трением процесс будет необратимым.  [c.199]

Термодинамический цикл, как и термодинамический процесс, может быть обратимым и необратимым. Обратимый цикл образуетея только обратимыми процессами.  [c.13]

Термодинамика. Всё содержание термодинамики является в осн. следствием её двух начал первого начала — закона сохранения энергии — и второго начала, констатирующего необратимость макроскопич, процессов. Они позволяют ввести однозначные ф-ции состояний внутреннюю энергию и энтропию. В замкиутьгх системах внутр. энергия остаётся неизменной, а энтропия сохраняется только при равновесных (обратимых) процессах. При необратимых процессах энтропия возрастает, и её рост наиб, полно отражает определ. направленность процессов в природе. В термодинамике осн. величинами, задающими состояние системы,—термодинамическими параметрами — являются в простейшем случае давление, объём и темп-ра. Связь между ними даётся термич. ур-нием состояния, а зависимости ср. энергии от объёма и темп-ры — калорич. ур-нием состояния. Простейшее термич. ур-ние состояния— ур-ние состояния идеального газа Клапейрона — Менделеева (см. Клапейрона уравнение).  [c.315]

При взаимодействии с окружающей средой термодинамическая система проходит ряд последовательных состояний, совокупность которых называют термодинамическим процессом. Термодинамический процесс называют равновесным, если в любом промежуточном состоянии при фиксированных внешних воздействиях для конечного интервала времени параметры термодинамического состояния системы не изменяются. Неравновесными называют процессы, состоящие из последовательности неравновесных состояний. При заданных внешних воздействиях реальные процессы в термодинамической системе всегда происходят с конечной скоростью изменения параметров термодинамического состояния, поэтому они всеща будут неравновесными. В том случае, если скорости изменения параметров термодинамического состояния достаточно малы, процесс приближенно можно считать равновесным. Равновесный процесс, который и в прямом, и в обратном направлениях проходит через одну и ту же последовательность состояний, только в обратном порядке, носит название обратимого. В противном случае термодинамический процесс называют необратимым. Необратимые термодинамические процессы характеризуются рассеянием энергии.  [c.181]

Напомним еще, что из общих проблем, возникающих в этом круге представлений, огромную известность получила задача Больцмана, т. е. противоречие, имеющееся между термодинамической необратимостью ( закон возрастания энтропии ) п пoлнo обратимостью во времени всех чисто механических процессов ( обратимость законов движения ). Эта проблема (правильная постановка которой достигается уже и у Гиббса введением понятия вероятности и рассмотрением соотношения двух упомянутых аспектов) и в наши дни является предметом многих работ. Отметим, в частности, недавнее исследование (193Э г.) Вейцзекера и фундаментальные работы Биркгофа и Нейманна (1930 и 1931 гг.).  [c.9]


Равновесные процессы термодинамически обратимы, т. е. они допускают возможность возвращения системы в первоначалгаое состояние без, изменений в окружающей среде. В противоположность этому необратимыми термодинамическими процессами назьь ваются процессы, не допускающие возможности возвращения системы в первоначальное состояние без изменений в окружающей среде.. ,  [c.31]

Здесь же следует упомянуть о работах Смолуховского [25], которые часто рассматриваются (и, повидимому, до известной степени рассматривались им самим) как примеры выяснения связи механической обратимости и термодинамической необратимости. Изучая броуновское движение частицы под действием упругой силы и флюктуации плотности в растворе коллоидных частиц, Смолуховский показал, что при начальных состояниях, сильно отклоняющихся от равновесного состояния, процесс с подавляющей вероятностью направлен к равновесию, а при начальных состояниях в окрестности равновесия оба направления хода процесса приблизительно одинаково вероятны. Кроме того, Смолуховский показал, что для любых двух заданных состояний подсчитанная при помощи стационарных вероятностей безусловная вероятность перехода из первого состояния во второе (т. е. стационарная вероятность осуществления первого состояния, умноженная на вероятность перехода из первого состояния во второе) равна безусловной вероятности перехода из второго состояния в первое. Смолуховский неоднократно отмечал, что указанное равенство выражает собой лош-мидтовское требование обратимости, а так же писал, что это равенство выражает собой тот принцип объяснения необратимости при помощи обратимых явлений, который отвергался Цермело. Эти утверждения Смолуховского о смысле установленного им равенства не могут быть, однако, признаны правильными лошмидтовская обратимость является фактом чистой механики, так же как и те свойства возврата, на которых основывался Цермело равенство же, выведенное Смолуховским,  [c.125]

Процессы, не удовлетворяющие этому условию, называются необратимыми. При необратимом процессе система не может быть возвращена в исходное состояние ни по тому же самому пути, по которому она пришла в конечное состояние, ни по какому-либо обходному пути вообще без до-полнительгюго внешнего воздействия (т. е. без принуждения ), тогда как при обратимом процессе термодинамическая система без дополнительного В1н0ш1него воздействия, а изолированная система сама по себе без всякого внешнего воздействия может вернуться в а-чальное состояние.  [c.22]

Молекулярно-теоретические исследования по вопросу об обращении термодинамически необратимых процессов и о повторении аномальных состояний, 1915. Эта статья состоит из разделов обратимость последовательности во времени время возврата и ожидаемое время повторения молекулярных состояний пояснение путем аналогии с другими процессами критерии необратимости молекулярных процессов. Именно из этой статьи приведены были выше высказывания Смолуховского об относительности понятля необратимого процесса и пределах приложимости второго закона. С точки зрения термодинамикн эта статья имеет особо важное значение.  [c.635]

Термодинамические процессы могут быть обратимыми и необратимыми. Обратимьш является равновесный процесс, если при проведении его в обратном направлении система приходит в начальное состояние, и во внешней среде нет изменений. Остальные процессы необратимы. Поскольку всегда имеет место рассеяние энергии (например, за счет трения), то любой реальный процесс необратим. Мерой рассеяния или необратимости является энтропия 8.  [c.51]

ВыбЬр термодинамических параметров диктуется не только физической природой системы и ее возможными изменениями, но также и принятыми методами, и предполагаемой степенью точности ее описания. Поэтому число и характер необходимых термодинамических параметров различаются при описании жидкости и твердого тела, а для одного и того же твердого тела — при описании одного типа деформирования (например, упругого) или другого (например, вязкопластического) различный выбор параметров может быть и при описании одного и того же вещества в зависимости от того, учитываются ли вторичные эффекты н какой класс взаимодействий рассматривается. Термодинамическое состояние системы в данный момент времени 1 полностью определяется набором значений термодинамических параметров, характеризующих систему, в этот момент времени. Система называется термодинамически равновесной, если ее состояние не меняется во времени. Но, как правило, система эволюционирует под действием внешних факторов. Переход системы из одного термодинамического состояния в другое называется термодинамическим процессом. Термодинамический процесс является обратимым, если обращение во времени эволюции системы — последовательности термодинамических состояний, через которые проходит система, — означает обращение действия всех внешних факторов. В противном случае процесс называется необратимым.  [c.113]

Энтропия, являясь экстенсивныга--(зависит от массы вещества) параметром состояния, в любом термодинамическом процессе полностью определяется крайними состояниями тела и не зависит от пути процесса. В связи с этим энтропия газа, являясь парамет- ром состояния, в процессах 1-3-2, 1-4-2, 1-5-2, 1-6-2 (рис. 6-1) будет изменяться одинаково. Это свойство относится как к обратимым, так и необратимым процессам. Поэтому  [c.82]

Из разобранного в предыдущем параграфе примера видно, что степень обратимости процесса увеличивается по мере уменьшения его скорости. Это происходит потому, что необратимость всегда связана с неравновесностью проходимых системой состояний. А неравновес-ность будет, очевидно, тем меньше, чем меньше скорость процесса по сравнению со скоростью самопроизвольного установления в системе термодинамического равновесия. В предельно медленном процессе все состояния, через которые проходит система, будут просто равновесными, и поэтому такие процессы называют равновесными, или квазистатическими.  [c.100]


Смотреть страницы где упоминается термин Процесс термодинамический необратимый обратимый : [c.615]    [c.19]    [c.87]    [c.445]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.460 ]



ПОИСК



Необратимость

Необратимость и обратимость

Обратимость

Обратимость в термодинамических процессах

Обратимость и необратимость процессов

Процессы необратимые

Процессы необратимые обратимые

Процессы обратимые

Процессы термодинамические

Термодинамическая равновесность, обратимые и необратимые процессы

Термодинамические процессы необратимые

Термодинамические процессы обратимые



© 2025 Mash-xxl.info Реклама на сайте