Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обратимость в термодинамических процессах

Обратимость в термодинамических процессах  [c.58]

При выполнении определенных условий можно представить себе обратимым любой термодинамический процесс. Эти условия состоят в том, что процесс должен быть разбит на бесконечно большое количество элементарных процессов (рис. 10), каждый из которых взаимодействует со своим источником теплоты. Таким образом, и источников теплоты в этом случае должно быть бесконечно большое количество. Элементарные же процессы предполагаются настолько малыми, что дают возможность считать температуры тела в их пределах постоянными, а при переходе от одного элементарного процесса к соседнему температуру рабочего тела, — меняющейся на бесконечно малую величину. Если все эти источники теплоты имеют температуры, равные температурам рабочего тела на обслуживаемых ими участках, то рассматриваемый процесс оказывается разбитым на бесконечно большое количество элементарных изотермных процессов, являющихся обратимыми. При последовательном обращении всех этих изотермных процессов можно, очевидно, обратить и весь конечный процесс любого вида.  [c.31]


Положим, имеется изолированная адиабатная система, в которой происходят термодинамические процессы. Если в этой изолированной системе протекают только обратимые процессы, то для нее можно применить уравнение (8-9)  [c.123]

Термодинамические процессы следует разделять на обратимые и необратимые. Обратимым процессом называется такой процесс, который, будучи проведенным в прямом и обратном направлениях, не оставляет никаких изменений в окружающей среде. Обратимый процесс можно рассматривать как сумму бесконечно близких равновесий, когда бесконечно малое изменение параметров (внешних условий) может изменить направление процесса. Поэтому истинно обратимый процесс может совершаться только с бесконечно малой скоростью, с тем чтобы соблюдалось условие равновесия или обратимости.  [c.252]

Второй закон термодинамики утверждает, что суш,ествует аддитивная функция состояния термодинамической системы — энтропия. При обратимых процессах в адиабатически изолированной системе ее энтропия не изменяется, а при необратимых — увеличивается. В отличие от энергии значения энтропии изолированной системы зависят, следовательно, от характера происходящих в ней процессов в ходе релаксации энтропия изолированной системы должна возрастать, достигая максимального значения при равновесии. Выясним количественную меру энтропии, вытекающую из приведенной выше формулировки второго закона.  [c.50]

Когда в термодинамике при обычных условиях используется представление об обратимых процессах, то предполагается, что хотя при всех реальных термодинамических процессах и имеются необратимые изменения, но они малы и получаемые при этом результаты справедливы и в пределе полностью обратимых процессов. В цикле Нернста такая абстракция невозможна, поскольку сколь угодно малая степень необратимости уводит систему с нулевой изотермы.  [c.164]

При изучении тепловых машин большое значение имеют круговые процессы, или циклы. Циклами называются замкнутые термодинамические процессы, в ходе которых рабочее тело, пройд,я целый ряд состояний, возвращается в первоначальное. Цикл, состоящий из обратимых процессов, называется обратимым циклом. Если один из процессов, входящий в цикл, необратим, то цикл называется необратимым. Так как в результате совершения цикла газ приходит в начальное состояние, то изменение внутренней энергии за цикл равно нулю AU = 0.  [c.49]

Свойство энтропии возрастать в необратимых процессах, да и сама необратимость находятся в противоречии с обратимостью всех механических движений и поэтому физический смысл энтропии не столь очевиден, как, например, физический смысл внутренней энергии. Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом, а ее молекулярно-кинетическое истолкование Больцманом, который ввел в теорию теплоты статистические представления, основанные на том, что необратимость тепловых процессов имеет вероятностный характер.  [c.76]


Индикаторная диаграмма дает возможность исследовать совершенство рабочих процессов в двигателе и определить так называемые индикаторные параметры двигателя работу, к. п. д., мощность, удельный расход топлива. Однако индикаторная диаграмма не является круговым обратимым термодинамическим процессом — циклом и не дает возможности сравнительно просто определить изменение состояния рабочего тела в отдельных термодинамических процессах, из которых состоит цикл.  [c.152]

В основе работы ГТУ ле кат идеальные циклы, состоящие из простейших термодинамических процессов. Термодинамическое изучение этих циклов базируется на предположениях аналогичных тем, которые были сделаны в главе XII, а именно циклы обратимы, подвод теплоты происходит без изменения химического состава рабочего тела цикла, отвод теплоты предполагается обратимым, гидравлические и тепловые потери отсутствуют, рабочее тело представляет собой идеальный газ с постоянной теплоемкостью.  [c.162]

Процессы с максимальной степенью необратимости называют предельно необратимыми. В предельно необратимом процессе работа L или Е, которая могла бы быть произведена в данных условиях телом, обращается вследствие необратимости процесса в нуль, тогда как при обратимом процессе она положительна. Частным случаем предельно необратимого процесса является самопроизвольный процесс, происходящий в термодинамической системе при установлении равновесия.  [c.25]

Превращения энергии в круговых процессах. Рассмотрим круговой процесс изменения состояния термодинамической системы, заключающийся в переходе от начального состояния к некоторому состоянию 2 по пути 1а2 и возвращении от состояния 2 к исходному состоянию I по другому пути 26/ каждый из указанных переходов может быть как обратимым, так и необратимым (рис. 2.1).  [c.28]

Термодинамический анализ обратимых и необратимых процессов. Термодинамический анализ основывается на первом и втором началах термодинамики, из которых математическим путем выводятся относящиеся к рассматриваемому явлению закономерности. Эти частные закономерности столь же достоверны, как и сами фундаментальные законы, положенные в основу термодинамики. Если учесть, что термодинамический метод может применяться к самым разнообразным явлениям, то станет вполне очевидна общность этого метода.  [c.158]

Анализ сложных необратимых процессов ДВС не может быть проведен методами термодинамики, основанными на обратимости процессов. Стремление же выявить основные причины, влияющие на экономичность работы двигателей, оценить совершенство протекающих в них процессов привело к необходимости отождествления этих процессов с обратимыми термодинамическими.  [c.71]

Теория термодинамических процессов в термодинамике в значительной степени идеализирована за счет введения таких понятий, как понятие обратимости процессов, представления рабочего тела как идеального газа, использования предпосылки о постоянстве численного значения показателя процесса как политропы с постоянным значением. Переход от идеализированных уравнений, получаемых при этих предпосылках, к реальным в этом случае осуществляется за счет введения в расчеты опытных коэффициентов, учитывающих отклонения идеализированных процессов от реальных.  [c.6]

В общем случае процессы истечения сплошных масс (жидкостей, паров и газов) связаны с изменениями состояния вещества вдоль оси потока и в его поперечном сечении. В термодинамической теории истечения жидкостей, паров и газов предполагается, что теоретические процессы истечения являются процессами обратимыми, что скорость и другие параметры во времени остаются постоянными, т. е. рассматриваются установившиеся течения. Считают также, что существует термодинамическое равновесие потока в его поперечных сечениях.  [c.97]

При анализе циклов ГТУ будем рассматривать идеализированные термодинамические циклы, т. е. циклы, в которых термодинамические процессы являются обратимыми, теплоемкость  [c.145]


Принятый метод исследования является термодинамическим. Он опирается на основные положения термодинамики, знание которых является отправным пунктом при изучении термодинамических свойств веществ. К ним относятся первый и второй законы термодинамики, понятия о термодинамической температуре и энтропии, представления об обратимости и необратимости процессов и некоторые другие положения, вытекающие из первого и второго начал термодинамики. В книге не будут вводиться определения различных термодинамических величин (внутренней энергии, энтальпии, теплоемкости и т. д.), так как они даны в соответствующих курсах термодинамики.  [c.5]

Прямой обратимый цикл Карно. Французский инженер Сади Карно в 1824 г. предложил цикл идеального теплового двигателя, т, е. цикл, состоящий из обратимых термодинамических процессов (рис. 5.3). Цикл состоит из двух изотерм а-Ь Т ) и -d(T ) и двух адиабат h- и d-a.  [c.61]

Необратимые процессы различаются степенью необратимости в одних процессах она может быть больше, в других меньше. Процессы с максимальной степенью необратимости называют предельно необратимыми. В предельно необратимом процессе полезная внешняя работа, которая могла бы быть произведена в данных условиях телом, обращается вследствие необратимости процесса в нуль. При обратимом процессе полезная внешняя работа максимальная. Частным случаем предельно необратимого процесса является самопроизвольный процесс, происходящий в термодинамической системе при установлении равновесия.  [c.27]

Большое значение в термодинамике имеет понятие обратимого термодинамического процесса после такого процесса термодинамическая система и окружающая среда могут возвратиться в начальное состояние. Возвращение в начальное состояние окружающей среды означает, что для осуществления обратного процесса не понадобилась компенсация. Более детально обратимый процесс можно представить себе следующим образом а) система должна пройти в прямом и обратном направлениях через одни и те же состояния б) после прямого и обратного процессов ни в системе, ни в окружающей среде не должно быть остаточных изменений. Если хотя бы одно из этих условий не выполняется, процесс является необратимым.  [c.46]

Реально вопрос о равновесности и обратимости процесса решают путем сравнения скорости распространения возмущений в термодинамической системе со скоростью изменения ее состояния. Например, сравнивают скорость движения поршня, сжимающего газ, со скоростью распространения малых возмущений в газе, равной, как известно, скорости звука чем меньше первая скорость по сравнению со второй, тем ближе процесс сжатия к равновесному, обратимому.  [c.47]

Рекуррентная формула (3.71) позволяет в принципе указать простую процедуру получения термодинамической шкалы температур для некоторого теплового состояния ( назначается температура Т1 в виде положительного действительного числа, снабженного наименованием единицы измерения к 1 кг рабочего тела обратимого двигателя Карно в изотермическом процессе при температуре 1 подводится некоторое количество теплоты дг, рабочее  [c.84]

Термодинамические процессы бывают обратимые и необратимые. Обратимым термодинамическим процессом называют процесс, допускающий возвращение рабочего тела в первоначальное состояние без того, чтобы в окружающей среде произошли какие-либо изменения. Невыполнение этого условия делает процесс необратимым. Любой процесс сопровождается энергетическими превращениями.  [c.8]

Обратимым процессом называется такой термодинамический процесс, который протекает через одни и те же равновесные состояния в прямом (А — В) и обратном В — А) направлениях так, что в рабочем теле и в окружающей его среде (системе) не происходит никаких остаточных изменений.  [c.11]

Максимально полезная работа. Эксергия и анергия. Так как всякая необратимость приводит к уменьшению полезной работы, то увеличение энтропии изолированной системы из-за необратимости протекающих в ней термодинамических процессов может служить мерой потери максимально полезной работы max, которую могла бы совершить система при протекании в ней обратимых термодинамических процессов. Действительно, при необратимых термодинамических процессах потерянная работа самопроизвольно превращается в теплоту, которая также самопроизвольно переходит к телам с более низкой температурой, увеличивая их энтропию (а следовательно, и системы) на значение AS".  [c.39]

Эффективность термодинамических циклов зависит от характера термодинамических процессов, образующих конкретный цикл. Очевидно, при прочих равных условиях наибольшую эффективность имеют те циклы, у которых все процессы обратимы. Это значит, что в процессах подвода и отвода теплоты рабочее тело должно иметь температуру, равную соответствующей температуре источников теплоты, и процессы эти должны протекать без трения, завихрения и других необратимых явлений. Циклы, состоящие из обратимых процессов, называются обратимыми.  [c.105]

Следовательно, обратимым термодинамическим процессом называют процесс, после которого система и взаимодействующие с ней системы (окружающая среда) могут возвратиться в первоначальное состояние.  [c.107]

Рассмотрим произвольный обратимый цикл, изображенный на рис. 8.8. Полная обратимость такого цикла, состоящего из самых разнообразных термодинамических процессов, может быть достигнута привлечением в качестве теплоотдатчиков и теплоприемников неограниченного числа точечных источников.  [c.111]


Отметим, что изменение энтропии самого рабочего тела в термодинамически замкнутом круговом процессе вне зависимости от того, обратим или необратим цикл, всегда равно нулю. Действительно, во всяком круговом процессе начальное состояние рабочего тела совпадает с конечным и оба эти состояния должны быть равновесными для обеспечения термодинамической замкнутости процесса. Последнее относится и к случаю необратимого цикла, поскольку и у такого цикла исходное и конечное состояния являются равновесными, несмотря на нарушение равновесности процесса в промежуточных состояниях интеграл же ф (6Q/T) = О только для обратимого цикла.  [c.119]

Течение упругой жидкости рассматривается как равновесный, Т. е. обратимый, процесс. Жидкость любого элементарного объема, выделенного из потока, находится в термодинамическом равновесии, что позволяет применить к ней уравнение состояния.  [c.208]

Рассматривая индикаторную диаграмму двигателя внутреннего сгорания, нельзя отождествлять ее с термодинамическим циклом. Однако, вводя некоторые упрощения в рассмотренные процессы, можно с некоторой степенью условности принять, что двигатели внутреннего сгорания работают по термодинамическим циклам, т. е. по обратимым замкнутым процессам.  [c.234]

Так как эксергия потока энергии в форме теплоты зависит только от температуры окружающей среды и температурного уровня процесса ее подвода к рабочему телу, все братимые циклы при одинаковых максимальной и минимальной температурах будут иметь одинаковую эффективность, независимо от вида рабочего тела и частных особенностей обратимого кругового термодинамического процесса.  [c.70]

Как мы уже указывали, автор в ряде случаев избегает строгого подхода к тем или иным термодинамическим понятиям. Например, по сути дела он не провел различия между понятиями равновесный и обратимый (процессы). Как известно, про--цесс является равновесным (квазистатическим), если он состоит из непрерывной совокупности равновесных состояний системы. Обратимый же процесс — это такой процесс с рассматриваемой системой, выполнив который она может вернуться в исходное состояние без изменений в ней самой и в системах, внешних по отношению к ней. В подавляющем большинстве случаев равновесные процессы являются обратимыми, однако можно привести пример, когда равновесный процесс не является обратимым. В описании политропных процессов автор отошел от общепринятого понимания понятия политропный процесс . В отличие от принятого в советской термодинамической литературе автор определяет политропный процесс как такой процесс с идеальным газом, который удовлетворяет условию pv = onst, в котором величина о лежит между единицей и величиной отношения pj . Поэтому изотермический, адиабатный и многие другие процессы не являются, по мнению автора, политропными. В указанном ограничении величины о и состоит отличие понимания политроп-ного процесса автором от принятого советскими термодинамиками.  [c.24]

Рассмотрим равновесный процесс расширения газа /1В(рис. 5-9), который прошел через равновесные состояния А, I, 2, 3, п, В. В этом процессе была получена работа расширения, изображаемая в некотором масштабе пл. ABD . Для того чтобы рабочее тело возвратить в первоначальное состояние (в точку Л), необходимо отточки В провести обратный процесс — процесс сжатия. Если увеличить на величину dp внешнее давление на поршень, то поршень передвинется на бесконечно малую величину и сожмет газ в цилиндре до давления внешней среды, равного р+Ф-При дальнейшем увеличении давления на dp поршень опять передвинется на бесконечно малую величину, и газ будет сжат до нового давления внешней среды. Во всех последуюш,их уве-. личениях внешнего давления на dp газ, сжимаясь при обратном течении процес-. са, будет проходить через все равновесные состояния прямого процесса — В, п, 3, 2, 1, А и возвратится к состоянию, характеризуемому точкой А. Затраченная работа в обратном процессе сжатия (пл. BA D) будет равна работе расширения в прямом процессе (пл. ABD ). При этих условиях все точки прямого процесса сольются со всеми точками обратного процесса. Такие процессы, протекающие в прямом и обратном направлениях без остаточных изменений как в самом рабочем теле, так и в окружающей среде, называют обратимыми. Следовательно, любой равновесный термодинамический процесс изменения состояния рабочего тела всегда будет обратимым процессом.  [c.60]

Энтропия, являясь экстенсивныга--(зависит от массы вещества) параметром состояния, в любом термодинамическом процессе полностью определяется крайними состояниями тела и не зависит от пути процесса. В связи с этим энтропия газа, являясь парамет- ром состояния, в процессах 1-3-2, 1-4-2, 1-5-2, 1-6-2 (рис. 6-1) будет изменяться одинаково. Это свойство относится как к обратимым, так и необратимым процессам. Поэтому  [c.82]

При изучении движения в упругих телах мы до сих пор считали, что процесс деформирования происходит обратимым образом. В действительности процесс термодинамически обратим, только если он происходит с бесконечно малой скоростью, так что в каждый данный момент в теле успевает установиться состояние термодинамического равновесия. Реальное движение происходит, однако, с конечной скоростью, тело не находится в каждый данный момент в равновесии, и поэтому в нем происходят процессы, съремящиеся привести его в равновесное состояние. Наличие этих процессов и приводит к необратимости движения, проявляющейся, в частности, в диссипации механической энергии, переходящей в конце концов в тепло ).  [c.177]

Это заключение Нернста подверглось критике Эйнштейна, который считал невозможным осуществление изотермического процесса D, поскольку при адиабатном сжатии тела в состоянии С оно при практически небольщом трении уйдет с кривой Г=0 К и будет сжиматься вдоль адиабагы СВ (абстракция об обратимых термодинамических процессах здесь невозможна) . Так что при достижении О К цикл Карно вырождается в совокупность двух слившихся адиабат и двух слившихся изотерм при прямом изотермическом процессе А В от теплоотдатчика берется количество теплоты 01, а при обратном процессе ЗА такое же количество теплоты Q2 ему отдается и к.п.д. такого цикла равен нулю.  [c.164]

Однако это не мешает использовать главное свойство Т — 5-диаграммы — теплота обратимого термодинамического процесса на ней определяется площадью под кривой процесса. Теплота элементарного процесса в окрестности точки М (рис. 3.7, а) равна йд=Тмс1з. Теплота процесса 2Ы определяется интегралом  [c.66]

Необходимо иметь в виду, что выведенный нами термический к. п. д. цикла Карно относится к обратимому круговому процессу, состоящему из обратимых термодинамических процессов. Необратимость процесса связана с потерей работы, и поэтому термический к. п. д. необрати-  [c.61]

При изучеиии движения упругой жидкости можно считать, что любой, сколь угодно малый объем движущегося рабочего тела находится в термодинамическом равновесии и характеризуется определенными значениями параметров. Параметры (в общем случае все параметры) непрерывно изменяются при переходе от одного сечения канала к смежному. При сделанном допущении и при отсутствии сил трения процесс непрерывного течения жидкости будет равновесным и, следовательно, обратимым. При течении с трением процесс будет необратимым.  [c.199]


Из рис. 23.5,6 видно, что больше половины работы, которую термодинамически можно было бы получить, если бы все процессы были обратимыми, теряется вследствие необратимости горения и передачи теп-чс ТЫ от [ азов к воде и пару в котлоагрегате. Процессы во всех остальных агрегатах ТЭС мгеют достаточно высокую степень термодинамического совершенства, причем потери эксергии в конденсаторе составляют всего 3,5%. Это понятно, ибо пар на входе в конденсатор имеет столь низкие параметры, что практически уже не может совершать работу.  [c.214]


Смотреть страницы где упоминается термин Обратимость в термодинамических процессах : [c.43]    [c.19]    [c.11]    [c.85]    [c.87]    [c.39]    [c.53]    [c.37]   
Смотреть главы в:

Жидкостные ракетные двигатели  -> Обратимость в термодинамических процессах



ПОИСК



Второй закон термодинамики Термодинамическая обратимость процессов

Обратимость

Понятие о равновесных и обратимых термодинамических процессах

Процесс термодинамический необратимый обратимый

Процессы обратимые

Процессы с одним резервуаром и теоремы об обратимой работе как введение в проблему термодинамической доступности энергии (с приложением В)

Процессы термодинамические

Равновесные термодинамические процессы и их обратимость

СОДЕРЖА Н И Е Обратимость термодинамических процессов

Термодинамическая равновесность, обратимые и необратимые процессы

Термодинамические процессы обратимые

Термодинамические процессы обратимые

Термодинамические процессы. Обратимые и реальные процессы

Эксергетический анализ основных обратимых термодинамических процессов



© 2025 Mash-xxl.info Реклама на сайте