Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изменение кривизны оси стержня

Сдвиг, вызываемый поперечной силой, не зависящей от 2, также остается неизменным по длине балки, при этом второй член в (12.117) обращается в нуль, т, е. в этом случае сдвиг не вызывает изменения кривизны оси стержня. Изменение Кл —кривизны оси стержня — вызывается переменным по г сдвигом такой сдвиг возникает, если и Qy также зависит от г.  [c.203]

При рассмотрении изгиба стержня с прямолинейной осью была использована зависимость между изгибающим моментом и изменением кривизны оси у. — 1р = М1 Е1). Поскольку первоначально ось стержня прямолинейна, изменение кривизны оси (и) совпадает с самой кривизной изогнутой оси. В случае же, если ось стержня еще до деформации криволинейна, то изменение кривизны представляет собой разность кривизн оси после и до деформации, и зависимость между изгибающим моментом в поперечном сечении стержня и изменением кривизны оси стержня приобретает вид 1 1 Л/  [c.255]


В формуле (И.71), для того чтобы охватить интегрированием всю длину оси кольцевого элемента, интегрирование ведется от О до 2л(Д5 = гДф). Выражение (1/Г1—I//-) —изменение кривизны оси стержня —играет роль о в (14.72).  [c.419]

Формула для изменения кривизны оси стержня, очерченного по окружности, была выведена в 12.19. В обозначениях, принятых в настоящем параграфе, она приобретает вид  [c.422]

Изменение кривизны оси стержня 203 255. 257, 264, 423  [c.613]

Изменение кривизны оси стержня при изгибе может быть сколь угодно большим, но при этом напряжения в любой точке стержня не должны превосходить предела пропорциональности.  [c.125]

Тензор изменения кривизны оси стержня вводим соотношением  [c.236]

При исследовании изгиба кривых стержней мы убедились, что элементарная теория, построенная на гипотезе плоских сечений, дает для напряжений весьма точные результаты. Поэтому в основание дальнейших выводов мы можем положить эту гипотезу и считать, что величина изгибающего момента пропорциональна изменению кривизны оси стержня в рассматриваемом сечении. Рассмотрим здесь случай, когда ось стержня весьма мало искривлена в одной из главных плоскостей стержня и все силы действуют в плоскости кривизны. Задача эта представляет практический интерес, так как ее решение позволит нам сделать некоторые выводы относительно влияния начального прогиба, всегда встречающегося при практическом выполнении прямых стержней, на обстоятельства изгиба стержня. При исследовании изгиба направим ось х по линии, соединяющей концы искривленной оси стержня, ось у расположим в плоскости кривизны. Обозначим через у ординаты начального искривления оси и через Ух — прогибы, обусловленные действием сил. При малых искривлениях мы можем как для начальной кривизны, так и для кривизны, получающейся после деформации, брать приближенные выражения. В таком случае изменение кривизны, вызванное действием сил, представляется так  [c.230]

Изгибом называется деформация, сопровождающаяся изменением кривизны оси стержня. В частности, при изгибе стержня с прямолинейной осью последняя получает криволинейное очертание. Такая деформация может явиться результатом приложения нагрузок разнообразных направлений. Если нагрузка, действующая на стержень, направлена перпендикулярно к его оси, то изгиб называют поперечным (рис. 76). В том случае когда поперечный изгиб происходит таким образом, что ось стержня оказывается плоской кривой, изгиб можно назвать простым.  [c.151]

Для тонкого кривого бруса с круговой осью дифференциальное уравнение изогнутой оси будет аналогично уравнению для прямого бруса (уравнение (79) стр. 124). Пусть А B D (рис. 334) представляет ось кругового кольца после деформации и и означает малые радиальные перемещения отдельных точек этой оси. Изменение кривизны оси стержня при изгибе можно исследовать, рассматривая элемент тп кольца по деформации и соответствующий, заключенный между теми же радиусами, элемент деформированного кольца (рис. 334, 6). Первоначальная длина элемента тп и его первоначальная кривизна будут  [c.337]


Деформация изгиба (рис. 1.6.4) заключается в искривлении оси прямого стержня или в изменении кривизны кривого стержня. Деформация изгиба прямолинейных стержней характеризуется углом поворота сечений ф и прогибом у.  [c.17]

Деформация изгиба (рис. 6) заключается в искривлении оси прямого стержня или в изменении кривизны кривого стержня. Происходящее при этом перемещение какой-либо точки оси стержня выражается вектором, начало которого совмещено с первоначальным положением точки, а конец — с положением той же точки в деформированном стержне. В прямых стержнях перемещения точек, направленные перпендикулярно к начальному положению оси, называют прогибами и обозначают буквой w. При изгибе происходит также поворот сечений стержня вокруг осей, лежащих в плоскостях сечений. Углы поворота сечений относительно их начальных положений обозначаются буквой 0. На изгиб работают, например, оси железнодорожных вагонов, листовые рессоры, зубья шестерен, спицы колес, балки междуэтажных перекрытий, рычаги и многие другие детали.  [c.18]

В тех случаях, когда изменения кривизны оси бруска при изгибе того же порядка, как и начальная кривизна 1/г, второй член в левой части уравнения (1) мал по сравнению с первым и им можно пренебречь. Мы приходим, таким образом, к известному дифференциальному уравнению для изогнутой оси прямого стержня и можем прогибы слегка искривленного стержня вычислять по формулам, выведенным для прямых стержней. Заключение это справедливо лишь до тех пор, пока изгиб бруска происходит под действием только поперечных нагрузок. Влияние продольной силы в случае прямого и в случае слегка искривленного стержня будет различно, и это влияние мы постараемся оценить, пользуясь выражением для искривлений в форме тригонометрического ряда. Этот прием в применении к прямым стержням оказывается весьма удобным ), он дает возможность установить весьма простые формулы для оценки влияния продольной силы на прогиб и на величину наибольшего момента. Возьмем стержень с опертыми концами и расположим ко-  [c.284]

При исследовании изгиба стержней малой кривизны ( 14) было указано, что с достаточной для практики точностью можно считать изменение кривизны оси бруска в каком-либо поперечном сечении пропорциональным величине соответствующего изгибающего момента.  [c.242]

Совершенно так же, как и для прямых стержней, мы при условии малых перемещений можем заменить уравнение (88) более простым уравнением, если выразим изменение кривизны оси бруска че1> з перемещение и, которое совершают точки оси в радиальном направлении при деформации бруска. Пусть АВ — искривленная ось бруска и пунктиром указана первоначальная круговая ось (рис. 19, а). Радиальные перемещения и считаем положительными, если они происходят в направлении к центру О. Двумя радиусами с углом ( в выделим элемент тп, кривизна которого до деформации будет .  [c.242]

Если e — скорость деформации оси стержня, v. — скорость изменения кривизны, то скорости деформации верхней и нижней полок будут е + и/i и е — соответственно. Учитывая возможность положительных и отрицательных знаков напряжений и знаков скоростей соответственно, нам будет удобно записывать основной закон ползучести в виде (18.2.1), а именно,  [c.648]

Для исследования равновесных состояний продольно сжатого упругого стержня при F > Fn, о которых речь шла в 15.3, следует обратиться к более точным выражениям деформаций и изменений кривизн через перемещения. Предположим справедливой гипотезу плоских сечений и, следовательно, верной зависимость (15.5) между моментом и характеристикой изгиба к = d0/ds. Выразим и через поперечное перемещение v (s) как функцию дуговой координаты s на изогну гой оси стержня. Так как (рис. 15.17) du/di = sin 0, то после однократного дифференцирования  [c.356]

Это значит, что изменение кривизны стержня происходит в плоскости момента в том случае, если последняя проходит через одну из главных осей сечения. Такой изгиб называется прямым. В отличие от прямого изгиба общий случай изгиба, при котором плоскость изгибающего момента с главной осью сечения не совпадает, называется косым изгибом.  [c.171]

Сформулируем сначала понятие о деформации изгиба. Изгибом стержня называется изменение кривизны его продольной оси. Изгиб является плоским, если ось стержня остается кривой линией, расположенной в одной плоскости.  [c.192]


Момент в произвольном сечении г стержня равен произведению силы Р на плечо г. Поэтому график k — М представляет собой также график изменения кривизны k по координате 2 (фиг. 83, а). (Масштаб по оси z равен масштабу момента в графике k — M, деленному па величину силы Р.)  [c.121]

Соотношение между изгибающим моментом М и изменением кривизны Лх оси стержня [4] является основной зависимостью теории изгиба стержней  [c.25]

Здесь 8т — продольная деформация оси Г стержня, /сир — кривизна и радиус кривизны деформированной оси Г, к — изменение кривизны.  [c.283]

Для определения изменения кривизны, соответствующей меридиональному сечению, мы воспользуемся формулой, которую применяют при исследовании изгиба кривого стержня с круговой осью 1). Формула эта для приращения кривизны меридионального сечения дает выражение  [c.297]

В первой части данной книги мы привели несколько точных решений, относя-ш ихся к изгибу призматических стержней. Из этих решений следует, что при изгибе стержней силами, приложенными по концам, имеет место допущение Бернулли — Эйлера относительно пропорциональности кривизны изогнутой оси стержня величине соответствующего изгибающего момента. Такой результат получается лишь при условии вполне определенного распределения усилий по концевым сечениям изгибаемого стержня. Если это распределение заменить другим, ему статически эквивалентным, то вблизи концов произойдет значительное изменение напряжений и деформаций. В сечениях же, удаленных от концов, эти изменения весьма малы (принцип Сен-Венана), мы можем ими пренебречь и считать справедливым допущение Бернулли — Эйлера. На основании таких же соображений мы можем распространить допущение Бернулли — Эйлера и на случай стержней, изгибаемых несколькими сосредоточенными силами. С большой точностью мы можем считать кривизну вдали от места приложения сил пропорциональной изгибающему моменту.  [c.189]

Момент в произвольном сечении z стержня равен произведению силы Р на плечо Z. Поэтому график к — М представляет собой также график изменения кривизны к по координате г (фиг. 83, а). (Масштаб по оси г равен масштабу момента в графике к—Ai, деленному на величину силы Р.)  [c.121]

Обозначим через Де укорочение оси стержня после бифуркации, то есть при изменении нагрузки от Р, До Р, через X — соответствующую кривизну изогнутой оси стержня. Деформацию волокна с координатой у, происшедшую после бифуркации, обозначим Де. Очевидно, что  [c.313]

Если размеры поперечного сечения кривого стержня не малы по сравнению с радиусом кривизны центральной оси, то допущение о линейном законе распределения напряжений по поперечному сечению не дает больше достаточной точности, и потому является необходимым принимать во внимание изменение длины волокон в зависимости от расстояния их до центра кривизны. Е. Винклер ) и Г. Ре-  [c.604]

Рассмотрим один из элементарных видов деформации стьржня — изгиб, характеризующийся тем, что при нем происходит изменение кривизны оси в частности, если первоначально ось стержня прямолинейна, то при изгибе она становится криволинейной. Изгибаемый стержень называется балкой ).  [c.97]

При расчете изгибаемых стержней в упругопластической стгщии считают справедливой гипотезу плоских сечений. Для стержня, поперечное сечение которого имеет две оси симметрии, нейтральная ось совпадает с его центральной осью и деформация в точке s.=SBiy, где - изменение кривизны оси балки.  [c.58]

В уравнении (7.39) вектор и ,—это вектор перемещений точек линии, соединяющей центры тяжести сечений. Уравнения, связывающие мо.мент АМ с изменением кривизн (с вектором Аи) в ранее принятом виде АМ ААх (АМ = ЛггАхО, справедливы в базисе е/ , связанном с линией центров изгиба сечений стержня. Поэтому для получения уравнений в скалярной форме надо, чтобы в уравнения входили проекции АМ/, что будет иметь место, если векторные уравнения (7.39) и (7.40) спроецировать на оси, связанные с линией центров изгиба. Вектор скорости точек линии, соединяющей центры изгиба,  [c.173]

Действительно, уравнения Клебша классической теории стержней получатся, если предположить в выражениях (18), что отсутствует деформация сдвига. Далее в уравнениях (19) следует принять е = О, т. е. допустить, что изменение кривизны и кручения оси стержня не зависит от растяжения. Кроме того, также необходимо, чтобы = Уу = О-  [c.87]

В действительности ось стержня никогда не является строго прямой, а линия действия результирующей силы сжатия никогда не проходит через центры тяжести торцевых сечений. В силу этого стержень подвергается изгибающим усилиям, и сразу же при первом приложении нагрузки происходят боковые прогибы. Пусть у, как и раньше, обозначает прогиб оси стержня от линии действия сжимающей силел в сечении с координатой X. Допустим, что форма оси до приложения нагрузки определяется начальным прогибом (ср. 181). Изменение кривизны вследствие изгиба равно  [c.559]

Обозначим через Ох положение стержня при равновесии, й — угол, образуемый стержнем с осью Ох в произвольный момент I, М.Ь — момент инерции стержня относительно точки О, р — радиус кривизны в произвольной точке Р пружины, а Ро — значение р в положении равновесия. Пусть х, у — координаты точки Р относительно системы с началом в точке О, осью абсцисс которой является Ох. Рассмотрим силы, действующие на стержень и часть пружины ВР. На стержень действует сила, приложенная к чо-чке О, с проекциями А, У, на оси координсгг, а взягь е с противоположным знаком эффективные силы эквивалентны паре с моментом Мк сР /с1 . Силы, действующие на пружину, сводятся к эффективным силам, взятым с противоположным знаком, которые вследствие малости пружины столь ничтожны, что ими можно пренебречь, и силам, действующим в сечении пружины в Р. Эти силы вызваны взаимодействием бесчисленного множества частиц, из когорых состоит пружина, и они эквивалентны силе в точке Р и паре сил. Если упругая пружина изгибается так, что ее кривизна изменяется, то, как установлено теоретически и экспериментально, момент этой пары пропорционален изменению кривизны в точке Р. Следовательно, мы можем представить его с помощью выражения Е (1/р — 1/ро), где величина Е зависит только от материала, из которого сделана пружина, и от формы ее сечения.  [c.96]


Направление силы Р< ) показано на рис. 6.27. Сосредоточенные и распределенные силы, вызванные потоком (на криволинейных участках трубопровода возникают распределенные силы, равные по модулю тгШо из, где из — кривизна осевой линии стержня), нагружают стержень. Вызванное потоком жидкости начальное напряженное состояние стержня существенно влияет на его частотные характеристики, что при исследовании задач динамики следует обязательно учитывать. Полученные уравнения равновесия (6.112) и (6.114) справедливы как для случая, когда форма осевой линии стержня при нагружении внешними силами практически остается без изменения, так и для случая, когда форма равновесия при приложении внещних сил существенно отличается от исходной (например, для стержней с малой жесткостью). В первом случае вектор бь входящий в уравнение (6.114), есть известная функция координаты S с известными проекциями в декартовых осях во втором случае вектор С] неизвестен и для определения Q и М уравнений (6.112), (6.114) недостаточно для решения задач статики необходимо рассматривать деформации стержня.  [c.264]

Ниже будем предполагать, что одна из главных осей инерции поперечного сечения и внешние силы лежат в плоскости кривизны стержня, а размеры поперечного сечения малы по сравнению с длиной стержня и с радиусом его кривизны. В этом случае без значительной погрешности можно допустить, что распределение напряжений от изгиба в кривом стержне будет таким же, как и в прямом стержне, а изменение угла между двумя смежными поперечными сечениями, находящимися на расстоянии ds, бунет MdslEJ. Если не учитывать влияния сдвигающих сил, то для определения перемещения любой точки А кривого стержня (рис. 23) будут служить следующие уравнения  [c.599]


Смотреть страницы где упоминается термин Изменение кривизны оси стержня : [c.257]    [c.368]    [c.437]    [c.230]    [c.99]    [c.78]    [c.28]    [c.74]    [c.8]    [c.353]    [c.72]    [c.188]    [c.87]   
Прикладная механика твердого деформируемого тела Том 2 (1978) -- [ c.203 , c.255 , c.257 , c.264 , c.423 ]



ПОИСК



Кривизна

Кривизна кривизна

Кривизна стержня



© 2025 Mash-xxl.info Реклама на сайте