Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термические магниевых сплавов

Следует отметить, что термическая обработка не имеет для магниевых сплавов такого большого значения, как для алюминиевых, так как у магниевых сплавов не наблюдается при этом столь существенного изменения свойств.  [c.597]

Магний — легкий металл (плотность 1740 кг/м ), температура его плавления 651 С. Промышленный магний марки Мг 96 содержит 99,92 % Mg, марки Mr 95 — 99,82 % Mg. Магниевые сплавы разделяют на деформируемые и литейные, не упрочняемые и упрочняемые термической обработкой.  [c.18]


Деформируемые магниевые сплавы (МА) содержат до 2 % Мп, до 5 % А1, десятые доли процента церия, например сплавы МА2, МА8, не упрочняемые термической обработкой высокопрочные сплавы — до 9 % А1 и 0,5 % Мп (сплав МА5). Жаропрочные магниевые сплавы содержат добавки циркония, никеля и др.  [c.18]

Пластической деформации в холодном состоянии поддаются мягкие и вязкие металлы (относительное удлинение 5 > 3 ч- 4%), например, стали в отожженном состоянии, медные, алюминиевые и магниевые сплавы, отожженные титановые сплавы. Ограниченно поддаются пластической деформации стали, подвергнутые нормализации и улучшению. Методы пластической деформации неприменимы для хрупких металлов (серые чугуны), а также для сталей, закаленных или подвергнутых химико-термической обработке (цементации, азотированию, цианированию).  [c.217]

Магниевые сплавы, полуфабрикаты которых после горячей деформации или литья не подвергаются термической обработке, дополнительного шифра при марке сплава не имеют.  [c.56]

Термической обработке подвергают также поковки из цветных сплавов. Виды термообработки в этом случае связаны с особенностями этих сплавов. Например, поковки из алюминиевых сплавов подвергают закалке и старению, из магниевых сплавов — отжигу, закалке или старению, из титановых сплавов — отжигу или гомогенизации.  [c.144]

Упрочнение при старении сопровождается одновременным уменьшением пластичности (повышением хрупкости) процессы старения, протекающие в сталях и сплавах, могут оказывать значительное отрицательное влияние на их свойства. Для устранения отрицательных влияний применяют специальные малоуглеродистые стали (легированные титаном, алюминием, цирконием), которые не стареют. Старение, обусловленное распадом пересыщенных твердых растворов, имеет особое значение для многих термически обрабатываемых сплавов на железной, алюминиевой, медной, магниевой, никелевой и кобальтовой основе.  [c.9]

Эффективное влияние обработки холодом на уменьшение остаточных напряжений алюминиевых и магниевых сплавов объясняется, по-видимому, тем, что при охлаждении при температуре ниже нуля в деталях возникают термические напряжения, которые в сумме с ранее имевшимися остаточными начинают превосходить предел упругости (или текучести) сплава. Избыточная часть напряжения снимается путем пластической деформации, и при возвращении к комнатной температуре уровень остаточных напряжений оказывается пониженным по сравнению с первоначальным. Никаких структурных изменений в сплавах в результате обработки холодом не происходит. Механические свойства сплавов не изменяются.  [c.410]


При соединении деталей из магниевых сплавов с деталями из других материалов следует учитывать высокий коэффициент термического расширения сплавов, а также возможность возникновения контактной коррозии и агрессивности неметаллических материалов по отношению к магнию.  [c.130]

Одним из важных необходимых качеств формовочного песка или глины является их огнеупорность. При недостаточной огнеупорности материала зёрна его, соприкасаясь с жидким металлом, размягчаются и привариваются к отливке, образуя термический пригар. Понижение огнеупорности формовочной смеси может быть вызвано, например, влиянием примесей, сплавляющихся с песком или глиной. При заливке металла в сырую песчаную форму часть тепла расходуется на испарение влаги формы, что ускоряет теплоотдачу и увеличивает скорость затвердевания отливки. С целью регулирования скорости охлаждения отливки в формовочную смесь добавляют специальные компоненты с повышенной или пониженной теплопроводностью. При литье магниевых сплавов в состав формовочной смеси в некоторых случаях вводят до 40% высокопроцентного ферросилиция, ускоряющего затвердевание отливки и, следовательно, уменьшающего опасность окисления магния в форме.  [c.74]

Нагрев нежелезных сплавов для ковки а штамповки, а также для термической обработки производят преимущественно в электрических печах сопротивления и в индукционных печах токами высокой частоты. При нагреве магниевых сплавов в печах не должно быть кусков железа, а также нельзя  [c.459]

ТЕРМИЧЕСКАЯ ОБРАБОТКА МАГНИЕВЫХ СПЛАВОВ  [c.558]

Термическая обработка магниевых сплавов менее эффективна, чем алюминиевых.  [c.559]

Режимы термической обработки магниевых сплавов приведены в табл. 102.  [c.559]

Режимы термической обработки магниевых сплавов (литьё в землю)  [c.559]

Характеристики механической прочности магниевых сплавов в термически обработанном состоянии  [c.431]

Виды назначения термической обработки для отливок из магниевых сплавов  [c.293]

Термическая обработка деталей из деформируемых магниевых сплавов  [c.299]

Термическая обработка Цель термической обработки Сталь Чугун Медные сплавы Алюминиевые сплавы Магниевые сплавы  [c.129]

Термическая обработка магниевых сплавов  [c.413]

Термическая обработка медных сплавов (408). Режимы отжига деталей из медных сплавов (409). Режимы закалки и отпуска бронзовых деталей (410). Термическая обработка алюминия и его сплавов (410). Режимы отжига деталей из алюминиевых сплавов (411). Режимы закалки и отпуска деталей из алюминиевых сплавов (412). Термическая обработка изделий из титана и его сплавов (413). Тер-иическая обработка магниевых сплавов (413). Режимы термической обработки магниевых сплавов (413).  [c.539]

Термическая обработка магниевых сплавов. Магниевые сплавы подвергают отжигу, закалке и старению.  [c.432]

Расчеты показывают, что при М = 2,5 3 температура воздуха в пограничном слое достигает 200—300° С (рис. 1.27). Как известно, прочность алюминиевых и магниевых сплавов нарушается при температуре примерно 200° С (рис. 1.28). Быстро теряет прочность органическое стекло, при температуре 60—80° С оно начинает размягчаться. При температуре около 400° С снижается прочность стали. В конструкции возникают дополнительные термические напряжения и быстро испаряется топливо из баков.  [c.59]

Цирконий, будучи введен в сплавы магния с цинком, измельчает зерно, улучшает механические свойства и повышает сопротивление коррозии. Редкоземельные металлы и торий повышают жаропрочность магниевых сплавов. Бериллий в количестве 0,005— 0,012 % уменьшает окисляемость магния при плавке, литье и термической обработке.  [c.402]

Магниевые сплавы, как и алюминиевые, по технологии изготовления подразделяют на две группы 1) литейные сплавы — для получения деталей методом фасонного литья, маркируемые буквами МЛ 2) деформируемые сплавы, подвергаемые прессованию, прокатке, ковке, штамповке и другим видам обработки давлением, маркируемые буквами МА . Магниевые сплавы, как и алюминиевые, подвергают термической обработке — диффузионному отжигу (гомогенизации), отжигу, закалке и старению. Слитки и фасонные отливки подвергают диффузионному отжигу (гомогенизации) обычно при 400—490 °С в течение 10—24 ч.  [c.403]


Укажите особенности термической обработки магниевых сплавов.  [c.406]

Режим термической обработки литейных магниевых сплавов (30]  [c.277]

Режимы термической обработки деформируемых магниевых сплавов (6. 14, 30, 651  [c.284]

Деформируемые магниевые сплавы (МА) (ГОСТ 14957-76) содержат до 2 % Мп, до 5 % А1, десятые доли процента церия, например сплавы МА2, MAS, не упрочняемые термической обработкой высокопрочные сплавы - до 9 % А1 и 0,5 %  [c.23]

Магниевые сплавы имеют высокие временное сопротивление (150. .. 350 МПа), относительное удлинение (3. .. 9 %) и твердость (НВ 30. .. 70). Магниевые сплавы хорошо работают при динамических нафузках, имеют удовлетворительную коррозионную стойкость, способны работать с высокими нафузками при температурах 200. .. 300 °С. Механические свойства магниевых сплавов значительно повышаются после упрочняющей термической обработки.  [c.207]

Магниевые сплавы подвергают термической обработке — диффузионному отжигу гомогенизации) после литья и рекристаллизационному отжигу после пластической деформации. Некоторые сплавы могут быть  [c.219]

Магниевые сплавы классифицируют по способу производства, уровню прочности, плотности, возможным температурам эксплуатации и чувствительности к упрочняющей термической обработке.  [c.220]

По технологии изготовления изделий магниевые сплавы разделяют на литейные (маркировка МЛ ) и деформируемые ( МА ). Магниевые сплавы подвергаются различным видам термической обработки. Так, для устранения ликвации в литых сплавах (растворения выделившихся при литье избыточных фаз и выравнивания химического состава по объему зерен) проводят диффузионный отжиг (гомогенизацию) фасонных отливок и слитков (400—490 °С, 10—24 ч). Наклеп снимают рекристаллиза-ционным отжигом при 250—350 °С, в процессе которого уменьшается также анизотропия механических свойств, возникшая при пластической деформации. Магниевые сплавы, в зависимости от состава, могут упрочняться закалкой (часто с охлаждением на воздухе) и последующим старением при 150—200 °С (режим Тб). Ряд сплавов закаливается уже в процессе охлаждения отливок или поковок и может сразу упрочняться искусственным старением (минуя закалку). Однако часто ограничиваются только гомогенизацией (закалкой) при 380—540 °С (режим Т4), ибо последующее старение, повышая на 20—35% прочность, приводит к снижению пластичности сплавов.  [c.178]

Все алюминиевые и магниевые сплавы разделяются на деформируемые, применяемые в прессованном, катаном и кованом состояниях, и литейные. Деформируемые алюминиевые и магниевые сплавы в свою очередь подразделяются на сплавы, не упрочняемые термической обработкой и упрочняемые ею (табл. 8.18).  [c.255]

Термическая обработка магниевых сплавов имеет много общего с термической обработкой алкзмиииевых сплавов, ( литки и фасонные отливки подвергают гомогенизационному отжигу. В зависимости от состава сплава отжиг проводят при 400—530 °С в течение 15 -30 ч для усгранепия ликвации легирующих элементов  [c.339]

В реальных деталях из сплавов АЛ2 и АЛ9 охлаждение до температуры —70° С приводит к снижению внутренних напряжений на 20—40% в зависимости от величины начального напряжения и формы детали. Основное значение при обработке холодом имеет первый цикл охлаждения. Дополнительное снижение напряжений после второго цикла обычно не превышает нескольких процентов. Третий цикл практически почти не меняет величину остаточных напряжений. Поэтому при стабилизирующей обработке алюминиевых и магниевых сплавов с применением охлаждения ниже нуля (так называемой циклической обработки) практически достаточно одного — двух циклов охлаждения и нагрева. При отрицательной температуре длительной выдержки деталей из легких сплавов (более 1 ч) не требуется. Скорость охлаждения до отрицательной температуры также практически не сказывается на эффективности циклической обработки. Нагрев при циклической обработке должен быть по возмолаюсти более высоким. Для сплавов в термически упрочненном состоянии он ограничивается температурой искусственного старения. Для неупрочняемых сплавов температура нагрева должна соответствовать температуре обычного отжига, т. е. 260—300° С.  [c.411]

Цирконий в компактном состоянии — металл серебристо-белого цвета, похожий на сталь. Порошок в зависимости от чистоты и дисперсности имеет цвет от черного до серого. Применяют в электровакуумной технике, в атомных реакторах и т. д., а также в качестве основы припоя для пайки титана и его сплавов, защитных покрытий, для повышения теплостойкости магниевых сплавов и т. д. По условиям производства различают магниетермический (восстановлением циркония магнием из четыреххлористого циркония), йодидный (термической диссоциацией тетрайодида в вакууме) и др. Состав магниетермического и йодидного циркония приведен в табл. 62,  [c.106]

Реячимы огжига деталей из медных сплавов (428). Режимы закалки и отпуска бронзовых деталей (429). Режимы отжига деталей из алюминиевых сплавов (430). Режимы закалки и отпуска деталей из алюминиевых сплавов (430). Режимы термической обработки магниевых сплавов (432).  [c.544]

По уровню прочности магниевые сплавы разделяют на малопрочные, средней прочности и высокопрочные. По плотности магниевые сплавы делят на легкие и сверхлегкие сплавы. К сверхлегким сплавам относятся сплавы, легированные литием (МА21, МА18 — самые легкие конструкционные металлические материалы), а к легким сплавам — все остальные сплавы. По чувствительности к упрочняющей термической обработке различают термически упрочняемые и термически неупрочняемые сплавы.  [c.220]


Смотреть страницы где упоминается термин Термические магниевых сплавов : [c.599]    [c.933]    [c.177]    [c.511]   
Машиностроение Энциклопедический справочник Раздел 3 Том 7 (1949) -- [ c.558 ]



ПОИСК



Режимы термической обработки сплавов на магниевой основе. Виды брака

Сплавы магниевые

Сплавы магниевые в деформируемые — Механические свойства 450 — Термическая обработка — Режимы

Сплавы магниевые в отливках Термическая обработка в воздушной среде — Режимы

Сплавы магниевые литейные — Термическая обработка — Режимы

Сплавы магниевые — Назначени назначение 2.509, 510 — Обработка термическая 2.513 Характеристики свойст

Сплавы магниевые — Назначени термическая 2.517 — Характеристики свойств

Сплавы магниевые — Назначение состав, полуфабрикаты, назначение 518, 519 — Обработка термическая 517 Характеристики свойст

Термическая обработка алюминиевых и магниевых сплавов

Термическая обработка заготовок и деталей из магниевых сплавов

Термическая обработка отливок из алюминиевых и магниевых сплавов

Термическая обработка сплавов магниевых

Термическая обработка сплавов магниевых деформируемы

Термическая обработка сплавов магниевых деформируемых Режимы

Термическая обработка сплавов магниевых литейных

Термическая обработка, дефекты металлов магниевых сплавов



© 2025 Mash-xxl.info Реклама на сайте