Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тепловой паровых турбин регенеративные

В паротурбинных энерготехнологических блоках с пиролизом мазута во многих случаях оказывается возможным использовать типовое энергетическое оборудование, проверенное в длительной эксплуатации. Так, например, в составе энергетической части ЭТБ можно применять стандартные паровые турбины, регенеративные подогреватели, конденсаторы, системы технического водоснабжения, мазутное хозяйство и др. Некоторые изменения необходимо вводить в парогенератор (замена горелочных устройств, реконструкция хвостовых поверхностей нагрева). Режимы работы парогенератора остаются практически такими же, как и в обычных установках. Поэтому выбор вспомогательного оборудования энергетической части блока, питательных, бустерных, конденсатных и циркуляционных насосов, регенеративных подогревателей, деаэраторов, тягодутьевых машин производят так же, как и при проектировании обычных тепловых электростанций, сжигающих мазут в сыром виде.  [c.170]


Сетевые подогреватели обычно изготовляют в вертикальном исполнении (рис. 35-9,в). Устройство сетевых подогревателей во многом аналогично устройству подогревателя низкого давления для регенеративного цикла. В верхней части их, как и в подогревателях, имеется водяная камера 1 с перегородкой 2. Однако поскольку сетевая вода может быть более загрязненной, чем конденсат паровой турбины, сетевые подогреватели выполняют с прямыми трубками 5, которые легче чистить. Это предопределяет наличие в этих подогревателях двух трубных досок — верхней 5 и нижней 7. В связи с наличием нижней трубной доски для направления движения сетевой воды в нижней части применяют подвесную водяную камеру 5, соединенную с трубной доской 7 фланцем. Такое устройство хорошо обеспечивает компенсацию разности тепловых удлинений трубного пучка 5 и корпуса 6, но удорожает подогреватель вследствие необходимости увеличения его диаметра для размещения фланцевого соединения камеры 8. В таких подогревателях можно изменяя уровень конденсата в корпусе при неизменном давлении греющего пара, изменять температуру нагреваемой сетевой воды. Для этого соответственно приоткрывают или прикрывают вентиль на выходе конденсата греющего пара и наблюдают за уровнем его в корпусе. При повышении уровня теплоотдача уменьшается и температура сетевой воды снижается.  [c.462]

После изложения основ теории паротурбин дан анализ основных характеристик работы паровых турбин при различных режимах, дано понятие об основных расчётах конденсаторов и регенеративной системы подогрева питательной воды. Раздел тепловых расчётов заканчивается анализом важнейших экономических вопросов, связанных с выбором основных параметров турбин.  [c.742]

Парогенератор ВПГ-450 может также применяться в составе теплофикационного блока мощностью 150 МВт с паровой турбиной Т-100-130 и газовой турбиной ГТ-35/50-770 рис. 42). При использовании турбины Т-100-130 без изменения ее тепловой схемы в экономайзерах второй и третьей ступеней придется нагревать сетевую воду, что несколько снизит экономичность ПГУ. При нагреве в этих экономайзерах питательной воды увеличивается пропуск пара в последние ступени части среднего давления, а при работе по электрическому графику увеличивается на 50—60 т/ч и пропуск пара в часть низкого давления, поскольку этот пар не используется в регенеративных подогревателях.  [c.75]


В ЦКТИ выполнены проектные разработки парогазового блока мощностью 400 МВт, состоящего из котлоагрегата под наддувом паропроизводительностью 800 т/ч, паровой турбины мощностью 300 МВт с параметрами пара 240 ата, 560/565° С и двух газотурбинных агрегатов мощностью по 30/50 МВт с начальной температурой 770° С. Тепловая схема блока представлена на рис. 44. Экономайзеры включены параллельно регенеративным подогревателям питательной воды. Отвод питательной воды в экономайзер после подогревателя ПНД-2 обеспечивает при номинальной нагрузке температуру уходящих газов не свыше 140° С при температурном напоре на холодном конце экономайзера 30° С. Топливо — угольная пыль.  [c.79]

Тепловой расчет схемы регенеративного подогрева питательной воды из отборов паровой турбины производится по общепринятой методике. Однако расход воды через регенеративные подогреватели в схеме ПГУ определяется с учетом использования части воды для охлаждения газов после экономайзера и воздуха в промежуточных охладителях газотурбинных агрегатов сложной схемы. Таким образом, расход воды через регенеративный подогреватель может быть определен по формуле  [c.180]

К совокупности относятся все термодинамические, расходные и некоторые конструктивные параметры. К совокупности Хд принадлежат дискретно изменяющиеся конструктивные параметры, а также признаки вида тепловой схемы, конструкций и компоновок оборудования, например диаметр трубопровода, характеристики (допускаемое напряжение и т. д.) сортов металла, число регенеративных отборов в паровой турбине, тип пучка труб теплообменной поверхности (шахматный или коридорный), схема включения теплообменной поверхности (прямоток или противоток).  [c.16]

Паротурбинные установки (ПТУ) — основа современных электростанций, использующих органическое и ядерное топливо. В разд. 3 детально освещен весь цикл вопросов, связанных с конструкцией, характеристиками, тепловым расчетом и проектированием ПТУ и ее элементов паровых турбин питательных насосов и воздуходувок, систем регенеративного подогрева питательной воды и др. Особое внимание уделено расчетам проточных частей и переменного режима работы турбин.  [c.8]

Рассмотрим решение задачи обеспечения надежности технологической части ЭТБ по бесперебойной- подаче очищенных продуктов пиролиза в топку парогенератора на примере энерготехнологического блока с паровой турбиной К-300-240, тепловая схема которого представлена на рис. 1-17. Структурная схема установки показана на рис. 6-9, на котором она условно разбита на две части технологическую, состоящую из технологической топки ТТ, регенератора РГ, блока пиролиза БП, реактора водяного газа РВ, газоохладителя ГО, и энергетическую, состоящую из парогенератора ПГ, паровой турбины ПТ, регенеративных подогревателей РП и электрогенератора ЭГ.  [c.165]

Паротурбинная установка обеспечивает преобразование тепловой энергии пара в механическую энергию и включает в общем случае паровую турбину, конденсационное устройство, регенеративные подогреватели питательной воды, деаэратор, конденсатные и питательные насосы.  [c.335]

Среди вспомогательного оборудования тепловых электрических станций также имеется ряд теплообменников. К ним относятся регенеративные подогреватели питательной воды низкого и высокого давления. Это — кожухотрубные теплообменники у них внутри трубок протекает вода, которая нагревается за счет теплоты, выделяемой при конденсации пара, поступающего в меж-трубное пространство. Для предварительной обработки питательной воды используются также деаэраторы, которые представляют собой контактные (смешивающие) подогреватели. Вода в деаэраторах нагревается паром до температуры, близкой к температуре насыщения, при этом растворенные в воде газы выделяются из нее и уходят из деаэратора (это необходимо для предотвращения коррозии). Крупным и сложным теплообменником на тепловой электростанции является конденсатор паровой турбины конденсация пара происходит на трубках, внутри которых протекает охлаждающая вода. На ТЭЦ находят применение также сетевые подогреватели— пароводяные трубчатые теплообменники, служащие для подогрева воды, подаваемой в тепловую сеть.  [c.330]


На тепловых электростанциях и в котельных установках упомянутые отложения при наличии благоприятных к тому условий могут образовываться е паровых котлах, их пароперегревателях и водяных экономайзерах, в испарителях, конденсаторах паровых турбин, паропреобразователях, теплофикационных подогревателях, регенеративных подогревателях и прочих теплообменниках, а также в трубопроводах и на лопатках паровых турбин.  [c.7]

На основе проведенных экспериментальных исследований разработан проект опытного образца прямоточного подогревателя (фиг. 73) для паровой турбины ВПТ-50. Исходные данные взяты из теплового расчета турбинной установки для наиболее тяжелого режима работы регенеративного подогревателя низкого давления П-3.  [c.142]

На рис. 11-8 показаны тепловые характеристики турбинной установки типа Г, учитывающие регенеративный подогрев конденсата и изменение рабочего процесса паровой турбины в за-  [c.142]

На рис. 16-5 показаны упрощенные тепловые схемы блоков 300 Мвт, включающие котельный агрегат 950 т ч, паровую турбину 300 Мвт с конденсатором, регенеративные подогреватели, конденсатные и питательные насосы. Эти схемы включают также трубопроводы пара и воды, соединяющие указанное оборудование, а также пусковые устройства.  [c.205]

Основное преимуш ество многоступенчатых паровых турбин состоит в том, что выбранное число ступеней может обеспечить в каждой из них такие скорости входа Сх, которые позволяют получать максимальный КПД. Кроме того, достоинством многоступенчатых паровых турбин является то, что из них может производиться отбор пара для регенеративного подогрева питательной воды, а также для теплофикации, что способствует повышению тепловой экономичности паротурбинной установки в целом.  [c.387]

Начальное теплосодержание пара перед турбиной 4 изменится незначительно. Современные турбогенераторы имеют регенеративный подогрев конденсата, что учитывается их характеристиками расходов пара. Температура питательной воды поддерживается постоянной или незначительно изменяется лишь тогда, когда конечный подогрев ее производится паром из регулируемого отбора. При питании подогревателя высокого давления из нерегулируемого отбора температура питательной воды повышается с повышением нагрузки. В этом случае паровая (весовая) характеристика недостаточна для определения тепловой экономичности, и нужно пользоваться тепловыми характеристиками часовых и удельных расходов тепла, аналогичными по своему виду паровым характеристикам.  [c.109]

На рис. 14 изображены некоторые характерные тепловые схемы ПГУ с ВПГ. В ПГУ с простой ГТУ (рис. 14, а) часть тепла выхлопных газов ГТУ (площадь 7" 788"7") утилизируется паровой частью цикла в экономайзере 5 без вытеснения паровой регенерации. В ПГУ с напорным экономайзером (рис. 14, б) нагрев питательной воды по выходе ее из регенеративных подогревателей происходит в экономайзере 5, обогреваемом газами из турбины высокого давления перед их поступлением в турбину низкого давления ГТУ. Промежуточное охлаждение газов перед турбиной низкого давления (площадь 7" 5 28" 7") приводит к уменьшению полезной работы газовой ступени.  [c.24]

Для схем ПГУ с вытеснением паровой регенерации максимальный к. п. д. достигается при минимальном отношении коэффициентов избытка воздуха (а /а —> 1). Увеличение относительной доли топлива, сжигаемого перед газовыми турбинами ПГУ, повышает к. п. д. установки. В ПГУ с ВПГ все топливо сжигается перед газовыми турбинами, и в них не уменьшается величина к. п. д. регенеративного участка паровой ступени л", с- Поэтому ПГУ такой схемы имеют максимальную тепловую эффективность.  [c.32]

Новые технические решения применяют в тепловых схемах ТЭС, включая в них подогреватели смешивающего (контактного) типа, охладители пара регенеративных отборов, приводные турбины питательных насосов, турбовоздуходувки паровых котлов под наддувом, предварительный подогрев воздуха.  [c.4]

Методика расчета схемы турбоустановки АЭС с сепарацией влаги и паровым промежуточным перегревом имеет свои особенности, в значительной мере отличающие ее от методики расчета ПТС ТЭС на органическом топливе. Особенность методики расчета АЭС обусловливается вводом дренажей из сепаратора влаги и промежуточных перегревателей в регенеративную схему ПВД и ПНД турбо-установки, процессом работы пара в турбине в области влажного пара. Это существенно осложняет применение обычной методики расчета ПТС и особенно оптимизацию параметров тепловой схемы. Ниже приведена методика расчета ПТС АЭС с использованием в качестве определяющей величины доли расхода рабочего пара через промежуточные перегреватели а .п.  [c.165]

Уходящие газы ГТУ могут быть глубоко охлаждены питательной водой только при полном или частичном отказе от подогрева ее отборным паром турбины. Доля остающегося парового регенеративного подогрева зависит от соотношения тепловых эквивалентов (теплоемкостей систем) СрО, греющих отходящих газов и питательной воды.  [c.131]

Рис. В,1. Типичные тепловые схемы паротурбинных конденсационных установок без промежуточного перегрева пара (а) и с промежуточным перегревом (б) 1—паровой котел 2 — турбина 3 — электрогенератор 4—конденсатор 5—конденсатный насос 6—регенеративный подогреватель низкого давления 7—дренажный насос 8—деаэратор 9—питательный насос 10—регенеративный подогреватель высокого давления Рис. В,1. Типичные <a href="/info/27466">тепловые схемы</a> паротурбинных конденсационных установок без промежуточного перегрева пара (а) и с промежуточным перегревом (б) 1—<a href="/info/120561">паровой котел</a> 2 — турбина 3 — электрогенератор 4—конденсатор 5—<a href="/info/27435">конденсатный насос</a> 6—<a href="/info/94599">регенеративный подогреватель низкого давления</a> 7—<a href="/info/345107">дренажный насос</a> 8—деаэратор 9—<a href="/info/27444">питательный насос</a> 10—<a href="/info/114838">регенеративный подогреватель</a> высокого давления

Регенеративные подогреватели применяются как в конденсационных станциях, так и на ТЭЦ для подогрева питательной воды паровых котлов паром, отбираемым из турбин с целью повышения тепловой экономичности установки в целом.  [c.163]

Так как все современные турбины работают с регенеративным подогревом конденсата, следует пользоваться паровыми и тепловыми характеристиками, построенными с учетом регенеративного подогрева воды. В этом  [c.134]

Принципиальные тепловые схемы станции должны составляться с учетом регенеративного подогрева всей питательной воды до температуры, соответствующей ГОСТ 3619-59 на изготовление паровых котлов. Согласно этому питательная вода, подаваемая в котлы среднего давления с рабочими параметрами пара 40 ат и 440° С, должна иметь температуру 145° С, а вода, подаваемая в котлы высокого давления с параметрами пара 100 ат и 540° С, должна быть подогрета до температуры 215° С. Регенеративный подогрев питательной воды осуществляется в специальных подогревателях низкого и высокого давления паром из отборов турбин.  [c.42]

В рассматриваемой тепловой схеме паровая турбина 7 принята конденсационной (возможна установка и теплофикационных турбин) с нерегулируемыми отборами пара из промежуточных ступеней для регенеративного подогрева питательной воды. Начальные параметры пара перед турбиной 7—12,8 и 565° С. В установке предусмотрен один промежуточный перегреватель, в котором пар при давлении 2,65 Мн1м перегревается до 565° С. После турбины 7 отработавший пар поступает в конденсатор 8. Конденсат из него насосом 9 подается в подогреватели 10 регенеративного цикла низкого давления (все подогреватели низкого давления на схеме условно показаны в виде одного, обозначенного позицией 10). После подогревателя 10 конденсат поступает в деаэратор //и далее в питательный насос 12, который подает питательную воду в подогреватели 13 высокого давления (эти подогреватели также условно показаны в виде одного обозначенного позицией 13). Для того чтобы иметь возможность регулировать температуру питательной воды, ее поток после насоса 12 разветвляется и часть питательной воды направляется в водяной экономайзер 14, являющийся второй ступенью по ходу уходящих газов из турбины 5.  [c.381]

Разработать тепловую схему для следующих условий. Конденсационная станция с 4 турбинами по 25 тыс. кет, 18 ата, Зо0° надстраинается одним агрегатом высокого давления 25 тыс. кет, 9J та, 480 с одновременной отдачей 1о0 (час n pi при 13 ата из паропреобразователя 18/13 ато. Турбины 18 -та не имеют регенеративных отборов. Питательные насосы с паровыми турбинами, отдающими пар в де 1Эраторы. Конечное давление = 0.04 ота  [c.121]

Заводы — изготовители промышленных паровых турбин небольшой мощности полагают, что требования ПТЭ [Л. 23], относящиеся к устройствам защиты и сигнализации для большей части промышленных турбин, несколько завышены, считая, что дело не столько в сравнительно небольшой мощности и невысоких параметрах, сколько в том, что промышленная турбина — это турбина теплофикационная с предельной выработкой энергии на тепловом потреблении, и автоматика и защита конденсационного устройства и системы регенеративного подогрева или не нужна вовсе, или доллгна быть сведена к минимуму. Имеет значение и то, что в промышленной установке относительно велико количество персонала. Поэтому ряд автоматических устройств, возможно, не оправдан. Исходя из указанного, заводы — изготовители промышленных турбин не снабжают их многими системами защиты и автоматики, требуемыми Правилами технической эксплуатации. Поэтому задачей персонала ТЭЦ является доукомплектование своих турбоустановок дополнительной защитой, указателями, сигнализацией, которые действительно необходимы, исходя из конструктивных особенностей данных турбин и условий их эксплуатации. Что касается малой автоматизации, то она имеет смысл тогда, когда она позволяет расширить круг обязанностей персонала, сократив  [c.76]

ТХ — топливное хозяйство ПТ — подготовка топлива ПК — паровой котел ТД—тепловой двигатель (паровая турбина) ЭГ— электрический генератор ЗУ — золоуловитель ЛС —дымосос ДТ р —дымовая труба ДВ — дутьевой вентилятор ГДУ—тягодутьевая установка Д/5У — шлакозолоудаление /Я — шлак 3 —- зола К — конденсатор ИОВ ЩИ) — насос охлаждающей воды (циркуляционный насос) ТВ — техническое водоснабжение ПНД и ПВД — регенеративные подогреватели низкого и высокою давлений КН и ЯЯ — конденсатный и питательный насосы ТП — тепловой потребитель НОК — насос обратного конденсата JfBO — химводоочистка —расход теплоты топлива на станцию Dq— расход пара на турбину — паровая нагрузка парового котла — потеря пара прн транспорте  [c.14]

Применение в схеме ПГУ с котлами-ути-лизаторами более мощных серийных паротурбинных установок потребует большего расхода пара высоких параметров. Это возможно при повышении температуры газов на входе в котел до 800—850°С за счет дополнительного сжигания до 25% общего расхода топлива (природного газа) в горелочных устройствах котла. На рис. 20,12 приведена принципиальная тепловая схема ПГУ-800 такого типа по проекту ВТИ и АТЭП. В ее состав включены две газотурбинные установки ГТЭ-150-1100 ПОТ ЛМЗ, двухкорпусный утилизационный паровой котел ЗнО на суммарную паропроизводительность 1150-10 кг/ч и параметры пара 13,5 МПа, 545/545 °С, паровая турбина К-500-166 ПОТ ЛМЗ. Данная схема имеет рЯд особенностей. Регенеративные отборы турбины (кроме последнего) заглушены в системе регенерации имеется только смешивающий ПИД. Применена без-деаэраторпая схема с деаэрацией конденсата турбины в конденсаторе и в смешивающем подогревателе. Конденсат с температурой 60 °С подается двумя питательными насосами ПЭ-720-220 в экономайзер котла. Отсутствие регенеративных отборов пара повышает его пропуск в конденсатор турбины, электрическая мощность которой ограничена в связи с этим до 450 МВт.  [c.302]

Как было показано в 5.6, нагрев питательной воды паровых турбин за счет использования тепловых ВЭР в количестве Свэр. МДж/с, приводит к снижению расхода теплоты, отводимой в регенеративные отборы, в размере AQper. Если значение AQper не превышает 10% расхода теплоты на турбину (это соответствует отключению не более трех подогревателей), расчет энергетической эффективности от использования ВЭР осуществляют методом, основанным на понятиях коэффициен-  [c.127]

Подтверждается и другой вывод, сделанный в работах ряда авторов максимально возможная утилизация теплоты выходных газов ГТУ в КУ приводит к наибольшему энергетическому эффекту (рис. 8.62). Альтернативным решением может быть предварительный регенеративный подогрев конденсата в одном, двух или трех перефевателях НД, последовательно питаемых паром паровой турбины. В тепловой схеме с двухконтурным КУ такой подогрев, как правило, приводит к уменьшению КПД производства электроэнергии ПГУ.  [c.352]


Тепловая схема паротурбинного энерготехнологического блока мощностью 300 МВт с пиролизом мазута приведена на рис. 1-17. Здесь энергетическая часть блока представлена паровой турбиной К-300-240 ЛМЗ и низконапорным парогенератором типа ПК-41. Технологическая часть включает блок пиролиза БП, фиксатор ФК, газоохлади-тель ГО, систему сероочистки СО с испарителем ИС и газовый компрессор ГК она работает по схеме, показанной на рис. 1-15 и 1-16. Расход мазута в блоке 23,2 кг/с, выход химической продукций (НК-230) — 2,97 кг/с. Расход острого пара на турбину составляет 252 кг/с, ее электрическая мощность — 277 МВт, пропуск пара в конденсатор — 120 кг/с. В регенеративном воздухоподогревателе, производится подогрев воздуха как для энергетического парогенератора,  [c.34]

Обычно во всех турбинах средней и большой мощности предусматривается еще ряд нерегулируемйх отборов. Этот пар используется для регенеративного подогрева конденсата перед подачей его в паровой котел. На фиг. 234 дана в упрощенном виде тепловая схема турбины с тремя регенеративными подогревателями (Л Ь 2 3) и соответственно тремя нерегулируемыми отборами пара а, Ь, с). Конденсат после конденсатора последовательно нагревается в каждо М подогревателе. Отбираемый из турбины пар для подогревателей конденсируется, и конденаат смешивается с основным потоком конденсата. Применение регенеративного подогрева воды обеспечивает заметное повышение термического к. п. д. цикла, как это видно из следующего выражения  [c.380]

Использование тепла О. г. представляет известные трудности вследст-Бие низких темп-р их и малых Г-ных напоров (перепадов). О. г. промышленных печей и силовых установок ( выхлопные газы ) часто имеют темп-ру 400—650°, что позволяет утилизировать часть заключающегося в них тепла для подогрева воды, воздуха, а при благоприятных условиях и для получения пара, идущего для технологич. нужд, для отопительных и силовых установок. Однако соответственные устройства (паровые котлы, рекуператоры, аккумуляторы, подогреватели и т. д.) должны иметь специальную конструкцию (сильно развитые нагревательные поверхности, тонкие стены, высокие скорости дымовых газов и т. д.) для того, чтобы можно было обеспечить достаточно интенсивный переход тепла при низких Г и малых Г-ных напорах. Практически удается таким путем понижать О. г. до 100— 150°, однако подобные установки по сравнению с нормальными получаются более громоздкими, дорогими и работающими с низким кпд (45 — 55%). Кроме того указанное понижение i° О. г. лишает возможности пользоваться естественной тягой дымовых труб и вызывает необходимость установки искусственных дымососов, на приведение в движение которых расходуется от 10 до 30% всей получаемой энергии пара. Тем не менее во многих случаях практики такие установки дают значительную экономию. Так, при больших газовых двигателях (газо-динамо и газо-воздуходувках) утилизация тепла выхлопных газов в паровых котлах специальной конструкции дает возможность получить от 10 до 15% добавочной мощности при" утилизации этого пара в паровых турбинах. Установка паровых котлов при больших мартеновских печах (100 m и больше), работающих с интенсивной тепловой нагрузкой или имеющих плохую утилизацию тепла в регенеративных камерах (малый объем насадок, большие просветы между кирпичами и т. д.), дает от 300 до 650 %г пара (давлением от 6 до 12 aim) на 1 m выплавленных стальных слитков. Установка тонкостенных рекуператоров и аккумуляторов дает возможность для целого ряда мелких промышленных печей применить принцип рекуперации или воспользоваться теплым воздухом для устройства рациональной вентиляции в промышленных помещениях.  [c.241]

Но паропроводам 28 пар подводится к паровой турбине 31, вращающей ротор электрического генератора 32. Трубопроводы 29 и 30 служат для транспорта пара промежуточного перегрева. По трубопроводам 44 вода из источника водоснабжения циркуляционными насосами 43, расположенными в береговой насосной 41, подается в конденсатор 33. Конден-сатиыми насосами 34 через регенеративные подо1 реватели низкого давления 35 конденсат перекачивается в деаэраторы 36. Туда же или в конденсатор турбины подается химически очищенная в фильтрах 46 добавочная вода, восполняющая потери конденсата. Под деаэраторами находятся аккумуляторные (запасные) баки питательной воды 37, которая питательными насосами 38 перекачивается через регенеративные подогреватели высокого давления 39 по питательным трубопроводам 40 в водяной экономайзер 20. Часть проработавшего в турбине пара используют в сетевых подогревателях 47 для отпуска тепловой энергии (ТЭ) с горячей водой бытовым потребителям и на отопление. Мостовые краны 49 используются при монтаже и ремонте оборудования котельной и машинного зала.  [c.23]

В состав турбинной установки входит ряд теплообменников регенеративные подогреватели, охладители пара и дренажа, сетевые подогреватели, испарители, паропреобразовате-лк и др. Наибольшее значение имеют парово-. дяиые (регенеративные и сетевые) подогреватели. В зависимости от нагрузки основных агрегатов эти теилообменники работают в различных режимах, в которых их тепловая нагрузка, параметры греющей и нагреваемой среды могут отличаться от расчетных (номинальных) величин. При отклонении режима их работы от расчетного изменяются их нагрузка и параметры, в частности недогрев воды по отношению к температуре насыщения греющего пара в поверхностных подогревателях.  [c.143]

Соединение в парогазовых установках пароводяного цикла обычной ТЭЦ с газовым циклом газотурбинной установки позволяет увеличить выработку электроэнергии на тепловом потреблении, т. е. с наименьшими потерями, благодаря использованию тепла отработавших газов газовой турбины в регенеративном цикле паровых турбин. Другими словами, при одной и той же тепловой нагрузке ТЭЦ с парогазовым циклом вырабатывает электроэнегии больше, чем ТЭЦ с пароводяным циклом, при одинаковых потерях тепла в конденсаторах паровых турбин.  [c.50]

Пар, полученный в паровом котле (ПК) и перегретый в пароперегревателе (ПП), направляется в паровую турбину (ПТ), где расширяется, выполняя полезную работу (вращает якорь генератора (Г)). За одной из ступеней пар с высоким давлением и температурой отбирается и направляется в регенеративный теплообменник П-1, где он конденсируется, отдавая тепловую энергию фазового перехода (при конденсации пара возвращается затраченная на его испарение тепловая энергия) питательной воде. Вода из первого теплообменника П-1 с помопцэю водяного насоса ВН-1 откачивается в паровой котел ПК. При первом отборе дг кг пара далее в турбинных ступенях движется (1 — ух) кг пара.  [c.247]

Рис. 22.2. Тепловая схема ТЭС с одним регенеративным подогревом питательной воды / — регенеративный подогреватель 2 — паровой котел — пароперегреватель 4 —турбина 5 — электрический renepiiTop 6 — конденсатор 7 -конденсатный насос 8 питательный насос Рис. 22.2. <a href="/info/27466">Тепловая схема</a> ТЭС с одним регенеративным подогревом <a href="/info/30192">питательной воды</a> / — <a href="/info/114838">регенеративный подогреватель</a> 2 — <a href="/info/120561">паровой котел</a> — пароперегреватель 4 —турбина 5 — электрический renepiiTop 6 — конденсатор 7 -<a href="/info/27435">конденсатный насос</a> 8 питательный насос
Недостаток парового промежуточного перегрева состоит в том, что при схеме без конденсации греющего пара необходимы дорогостоящие паропроводы возврата охлажденного первичного пара в котельный агрегат. Если же схема промежуточного перегрева пара предусматривает переход греющего пара в жидкую фазу, то для отвода и использования полученного конденсата нужны специальные насосы высокого давления, осуществляющие подачу конденсата в питательный тракт за регенеративными подогревателями. Можно подать конденсат в питательный тракт до питательных насосов под напором, имеющимся у конденсата за промежуточным пароперегревателем. Однако в этом случае придется считаться с тепловыми потерями, связанными с вытеснением отборного пара турбин в регенеративной схеме подогрева пи гательнои воды.  [c.47]

Интересное техническое решение по газотурбинной надстройке энергоблока мощностью 300 МВт Костромской ГРЭС было разработано в ВТИ (П.А. Березинец и др.). Был предусмотрен сброс выходных газов ГТУ типа ГТЭ-110 в энергетический паровой котел с частичным вытеснением регенеративного подогрева питательной воды в тепловой схеме ПТУ. Основное оборудование энергоблока газомазутный паровой котел типа ПП-1000/255 ГМ (ТГМП-314) (изготовитель Таганрогский котельный завод) и ПТУ с турбиной типа К-300-240 (ЛМЗ). Автономный режим работы при номинальной нагрузке имеет следующие показатели  [c.527]


На фиг. 2 показана в качестве примера принципиальная тепловая схема паротурбинной установки сверхвысокого давления (170 ama, 550°) мощностью 150 мгвт Ленинградского металлического завода (ЛМЗ). Поступающий из котла пар проходит через цилиндры 1, 2 а 6 высокого, среднего и низкого давлений. Турбина снабжена семью нерегулируемыми отборами пара, т. е. давление в них не поддерживается постоянным, а зависит от нагрузки турбины. Нумерация отборов считается по ходу пара в первом отборе пар наиболее высокого давления, а в последнем (седьмом) — наинизшего. Отработавший пар из цилиндра 5 низкого давления поступает параллельно в два конденсатора 8, в которых, отдавая свое тепло движущейся по трубкам охлаждающей воде, конденсируется. Образующийся конденсат является основной составляющей питательной воды парового котла и конденсатным насосом 10 подается через последовательно расположенные подогреватели в деаэратор 21. Из деаэратора первой ступенью питательного насоса 22 конденсат подается в три подогревателя 24, 25 и 26, а затем второй ступенью питательного насоса 27 — в паровой котел. К регенеративным подогревателям из соответствующих отборов турбины подводится пар, который, конденсируясь, отдает свое тепло питательной воде, нагревая ее до температуры входа котел. Регенеративные подогреватели, через которые вода подается конденсатным насосом, называются подогревателями низкого давления (П. Н. Д.), а подогреватели, которые находятся под напором питательного насоса, — высокого давления (П. В. Д.).  [c.10]

На рис. 57 приведены тепловые схемы электростанций Фортуна I, Фортуна II и Фортуна III, а на рис. 58 —процессы расширения пара в турбинах этих электростанций. Из сравнения тепловых схем виден технический прогресс в развитии энергетики этого периода. Старые конденсационные турбоагрегаты на электростанциях Фортуна I и Фортуна II первоначально имели лишь по одному отбору для регенеративного подогрева питательной воды. При сооружении надстройки в систему регенеративного подогрева питательной воды была включена центральная испарительная установка для снабжения паром с давлением 5 ата испарителей и деаэраторов предусмотрена вспомогательная паровая магистраль, получающая пар от турбины с противодавлением, из выхлопа приводной турбины питательного насоса, от двух редукционноохладительных установок и из первого отбора турбины низкого давления № 8.  [c.54]


Смотреть страницы где упоминается термин Тепловой паровых турбин регенеративные : [c.5]    [c.209]    [c.12]    [c.242]    [c.85]    [c.100]   
Машиностроение Энциклопедический справочник Раздел 4 Том 13 (1949) -- [ c.157 ]



ПОИСК



Турбина паровая

Турбины Паровые турбины

Турбины паровые



© 2025 Mash-xxl.info Реклама на сайте