Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теорема о наибольшей работе

Термодинамика возникла из потребностей теплотехники . Развитие производительных сил стимулировало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. французским физиком, инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения , устанавливающим основные положения материализма. Закон сохранения и превращения энергии имеет как количественную, так и качественную стороны. Количественная сторона закона сохранения и превращения энергии состоит в утверждении, что энергия системы является однозначной функцией ее состояния и при любых процессах в изолированной системе сохраняется, превращаясь лишь в строго определенном количественном соотношении эквивалентности из  [c.10]


Теорема Карно указывает путь повышения КПД тепловых машин. Она сыграла руководящую роль в развитии основ теплотехники. Хотя 1НИ одна применяемая в технике тепловая машина не работает по циклу Карно, значение этого цикла состоит в том, что oiH имеет наибольший КПД по сравнению с циклами, работающими в тех же температурных пределах, и является мерой КПД всех других циклов ( ).  [c.69]

До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]

Как такового, понятия холод в термодинамике нет. Холод — это просто теплота, температурный уровень которой ниже температуры окружающей среды [32]. Исторически термодинамика возникла из потребностей создания эффективных тепловых машин, т. е. таких устройств, которые служат для превращения теплоты в механическую работу. Первое теоретическое исследование работы тепловых машин было проведено Сади Карно (1796-1832 гг.), доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало.  [c.13]


Изложенная выше теория кручения брусьев с круглым сечением была разработана в конце ХУП в. французским ученым военным инженером Кулоном (1736—1806 гг.). В современном ее виде она была изложена в книге Навье, которому принадлежит и первая попытка разработать теорию кручения бруса некруглого сечения. Эта задача была разрешена только в 1855 г. французским ученым Сен-Венаном (1797—1886 гг.), впервые давшим строгий метод решения задачи о кручении бруса с произвольным поперечным сечением и приложившим его ко многим частным случаям, например к прямоугольному сечению. Значительный вклад в общую теорию кручения был сделан в работе русского ученого доцента Московского университета А. А. Соколова, изданной в 1878 г. В этой работе была, в частности, доказана важная теорема о том, что наибольшие напряжения при кручении бруса с любым поперечным сечением никогда не могут быть в точках внутри стержня, а  [c.129]

Операционные методы. Для многих задач теплопроводности использование классических методов оказывается неэффективным, например, применение метода разделения переменных для задач с внутренними источниками тепла. Решения, получаемые классическими методами, не всегда удобны для практического использования. Часто требуется иметь приближенные решения, которые получить из классических решений трудно. В результате запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления были получены проф. М. Ващенко-Захарченко [7] и независимо от него Хевисайдом [102]. Наибольшее распространение они нашли в электротехнике, благодаря работам Хевисайда. Этот метод оказался настолько эффективным, что позволил решить многие задачи, считавшиеся до него почти неразрешимыми.  [c.51]

Предложение I устанавливает правило нахождения координат центра тяжести системы тел. Следующее предложение уточняет это правило для случая п равных тел. Третья теорема, говоря современным языком, доказывает, что при перемещении тел системы сумма работ их весов равна работе общего веса всех тел на соответствующем перемещении центра тяжести. Четвертое предложение устанавливает, что наибольшая высота центра тяжести системы тел не изменится, если тела будут в какой-то момент освобождены от связей между ними. Центральное место в теории занимает предложение V, дающее формулу для определения положения центра качания или приведенной длины физического маятника.  [c.84]

Исторически термодинамика возникла из потребностей теплотехники. Развитие производительных сил стимулиров.ало ее создание. Широкое применение в начале XIX в. паровой машины поставило перед наукой задачу теоретического изучения работы тепловых машин с целью повышения их коэффициента полезного действия. Это исследование было проведено в 1824 г. в первом сочинении по термодинамике французским физиком и инженером Сади Карно, доказавшим теоремы, определяющие наибольший коэффициент полезного действия тепловых машин. Эти теоремы позволили впоследствии сформулировать один из основных законов термодинамики — второе начало. В 40-х годах XIX в. в результате исследований Майера и Джоуля был установлен механический эквивалент теплоты и на этой основе открыт закон сохранения и превращения энергии, называемый в термодинамике ее первым началом. Энгельс назвал его великим основным законом движения .  [c.9]

С.Б. Вигдергаузом [24] обратная задача теории упругости сведена с помощью интегралов типа Коши к интегральному уравнению Фредгольма, для решеция которого предложено использовать метод н1аименьшнх квадратов. Этим же автором в работе [25] доказана теорема о наибольшей прочности равнопрочных контуров в случае постоянной нагрузки. Н.В. Баничук [26] доказал, что оптимальными являются отверстия с равно напряженными границами. В монографии [27] значительное внимание уделено задачам оптимизации с неизвестными границами теории упругости.  [c.193]

Второе направление, тесно связанное с первым, представлено работами по теории возмущений небесной механики. Наибольшее значение здесь имели исследования Ж. Лагранжа и П. С. Лапласа. Математический аппарат и методы теоретического исследования тут по сути те же, что и в теории малых колебаний. Однако в идейном отношении существенно то, что рассматривается устойчивость некоторого состояния движения и что само содержание понятия устойчивости в связи с этим изменялось. Сдвиг в сторону динамики демонстрирует нам и еще один важный результат, полученный механикой XVIII в.,— теорема Лагранжа об устойчивости положения равновесия механической системы, соответствующего максимуму силовой (или минимуму потенциальной) функции. Доказательство теоремы, логически проведенное небезупречно, основано на применении интеграла живых сил.  [c.119]


Как и в задачах предельного равновесия, в теории приспособляемости широкое распространение получили приближенные методы, позволяющие при совместном использовании двух теорем получать двухсторонние оценки для параметров, определяющих предельный цикл. Пожалуй, наибольшее распространение получили приближенные статические методы определения нижних оценок [55, 57, 58, 157—160, 202, 203, 205, 220 и др.], базирующиеся на применении каких-либо предположений относительно полей самоуравновешенных напряжений (работы разных авторов отличаются конкретными способами задания этих напряжений) и последующем подборе таких значений параметров нагрузок, при которых удовлетворяются все условия теоремы Мелана.  [c.39]

Кроме работ по теплопередаче и технической гидродинамике, из личных работ Михаила Викторовича наибольшее значение имеют исследования по теории подобия и теории и методике моделирования тепловых устройств. Этим проблемам, имеющим первостепенное научно-техническое значение, Михаил Викторович уделял, пожалуй, наибольшее внимание. Интерес к ним возник у Михаила Викторовича не без влияния упомянутой знаменитой монографии Беседы по механике В. Л. Кириичева, в которой впервые систематически рассмотрено моделирование применительно к простейшим задачам механики. Михаил Викторович разрабатывал моделирование применительно к тепловым устройствам. Он неоднократно излагал теорию подобия в целом, освещал различные ее стороны, развивал формальный аппарат ее он же восстановил историю развития теории. При этом Михаил Викторович дал четкую формулировку основных положений о подобии в виде трех теорем, из которых третья теорема, определяющая правила моделирования, впервые дана Михаилом Викторовичем.  [c.250]

Естественно, что научные вопросы составляют если не наибольшую по объему, то, во всяком случае, наиболее существенную часть переписки. И здесь, прежде всего, необходимо отметить, что, несмотря на достаточное разнообразие затрагиваемой в переписке научной тематики, есть одна доминирующая тема, к которой чаще всего обращается Софья Васильевна — это вопрос об интегрировании уравнений при помощи аналитических функций, главным образом при помощи абелевых функций, и прежде всего вопрос об интегрировании уравнений движения тяжелого твердого тела вокруг неподвижной точки — это задача, прославившая С. В. Ковалевскую. Школа Вейерштрасса — это, конечно, школа теории функций комплексного переменного здесь разбираются и изучаются общие теоремы и общие методы теории, идет сравнение методов самого Вейерштрасса, алгебраизированных методов, основанных на систематическом применении степенных рядов, и методов, основанных на теоремах Коши это работы Миттаг-Леффлера , юного Рунге, начинающего Гурвица. А кстати изучаются вопросы об области существования аналитических функций, о разложении функций в ряд — это работы Бендиксона, Фрагмена.  [c.17]

В первой работе получено дифференциальное уравнение малых колебаний математического маятника. Повый общий принцип, излагаемый в работах 1748-1749 гг., состоит в том, что из всех положений, которые последовательно занимает система тел, связанных между собой нитями, рычагами или любыми другими средствами и двигающихся под действием некоторых сил, положение, в котором система имеет наибольшую сумму произведений масс на квадраты скоростей, то есть наибольшую живую силу, является именно тем положением, в которое необходимо в первую очередь поместить систему, чтобы она оставалась в покое [182]. Пз определения принципа с достаточной ясностью следует его аналогичность принципу возможных перемещений, сформулированному ранее П. Бернулли. Однако эта аналогичность может быть установлена только с помощью теоремы об изменении кинетической энергии, тогда уже известной отдельным ученым, но еще не вошедшей в общепринятый арсенал теоретической механики. Поэтому принцип Куртиврона можно считать новым. Строгое доказательство своего принципа Куртиврон не приводит, ограничившись его демонстрацией на конкретных примерах.  [c.249]


Смотреть страницы где упоминается термин Теорема о наибольшей работе : [c.291]    [c.60]    [c.95]    [c.151]   
Сопротивление материалов Том 1 Издание 2 (1965) -- [ c.347 ]



ПОИСК



Теорема работ



© 2025 Mash-xxl.info Реклама на сайте