Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Примесные центры в полупроводник

При формулировке рассматриваемой модели мы, однако, пренебрегли одним важным свойством суммарной потенциальной энергии Т (г). Хотя волновая функция фд (г — К ), описывающая связанное состояние электрона в атоме — в основном, собственная функция задачи с одиночной атомной потенциальной ямой V (г), соответствующее собственное значение энергии 1 оказывается очень чувствительным к хвостам ям, протягивающимся от прочих центров, перекрываясь друг с другом (рис. 13.4). При беспорядке газового типа имеет место разброс энергий связанных состояний, в результате чего возникает случайное их распределение с характерной шириной W. В локаторном представлении это есть не что иное как диагональный беспорядок, типичный для модели Андерсона ( 9.9) существует мнение, что последняя в какой-то мере имитирует примесную зону в полупроводнике.  [c.562]


Примесное поглощение наблюдается в полупроводниках и диэлектриках, содержащих примесные атомы. В этом случае поглощение света связано с возбуждением примесных центров или с их ионизацией. Например, в материале л-типа электроны с донорных уровней могут быть возбуждены в зону проводимости. Если доноры (или акцепторы) вносят в запрещенную зону мелкие уровни, то наблюдать примесное поглощение можно лишь при достаточно низких температурах. Действительно, в области высоких температур все эти уровни ионизованы за счет термического возбуждения. Так как энергия ионизации примесных уровней меньше, чем энергия, требуемая для перевода электронов из валентной зоны в зону проводимости, то полосы примесного поглощения лежат за краем собственного поглощения.  [c.312]

Наличие метастабильных примесных центров обычно связывают с двумя возможностями зарядового и структурного состояния примеси — в исходном, когда примесь располагается в узле замещаемого элемента, и реконструированном состоянии, т. е. в междуузельной позиции. Прототипом метастабильных центров являются т. н. ОХ-центры, обнаруженные в III—V полупроводниках при их легировании донорными примесями [78, 79].  [c.46]

Люминесценция возникает в некоторых диэлектриках и полупроводниках в виде вторичного излучения света с частотой, меньшей, чем частота облучающего света. Фотолюминесценция обусловлена наличием в диэлектрике примесных центров, поглощающих фотоны падающего света с частотой v, которые возбуждают в диэлектрике нестационарные электронные состояния. Затем происходят релаксация этих состояний и испускание квантов вторичного света на частоте v ультрафиолетовое излучение, может испускать вследствие этого свет в видимом диапазоне. Когда вторичное излучение происходит непосредственно во время облучения диэлектрика более жестким излучением, описанное явление называется флуоресценцией. Если же вторичное излучение происходит со значительной временной задержкой, то эффект называется фосфоресценцией. Оба эти эффекта используются в технике.  [c.32]

Примесные полупроводниковые кристаллы. Германий и кремний, элементы IV основной группы Периодической системы, обладают в чистом виде низкой проводимостью. Однако они приобретают свойства полупроводников, если к ним добавить элементы III и V основных групп с приблизительно одинаковым атомным радиусом, так как в этом случае примесный центр становится электрически активным. Благодаря внедрению элементов этих групп, к примеру Р, Аз, 5Ь (V группа), в германии образуются дефекты, вызывающие появление избытка электронов. При таком замещении получаются дефекты донорного типа, так как избыточный пятый валентный электрон сурьмы связан только слегка и вблизи примесного центра образует протяженное облако отрицательного заряда, которое охватывает область приблизительно в 1000 атомов германия (рис. 10.6). Так как свободные электроны являются носителями зарядов, то речь идет о полупроводнике типа п.  [c.214]


В отсутствие магнитного поля. Будем считать систему в целом нейтральной благодаря наличию (не обязательно равномерно размазанного) классического компенсирующего заряда. Именно такая ситуация типична как для металла (свободные электроны и ионы решетки), так и для полупроводника (свободные электроны или дырки и заряженные примесные центры). Рассматривая электростатическое взаимодействие частиц как взаимодействие через поле, можно непосредственно воспользоваться уравнениями (10.1). (10.2) и (9.5а), (9.13) следует лишь специализировать фигурирующие в них величины оР и оТ в соответствии с конкретной природой данной физической системы. Ограничимся неферромагнитными веществами. Будем считать также, что валентные электроны достаточно отделены (энергетически) от всех остальных, чтобы можно было рассматривать атомные остовы просто как источники поля ). В качестве невозмущенной задачи, решение которой считается известным, естественно выбрать одноэлектронную задачу в данной идеальной кристаллической решетке. Под словом одноэлектронная понимается задача об одном электроне в периодическом поле атомных остовов, нейтрализованных равномерно распределенным зарядом всех остальных электронов. Предположим, что соответствующие собственные значения энергии не зависят от спина 2), и обозначим их через (X), а принадлежащие им собственные функции — через ср (л ) (X — совокупность всех квантовых чисел кроме спинового). Тогда в соответствии с (5.14) невозмущенная фермиевская функция Грина принимает вид  [c.161]

В структурах пьезоэлектрик—полупроводник наряду с операцией свёртки или корреляции осуществляют также сравнительно долговременное запоминание акустич. сигналов такие устройства наз. устройствами акустич. памяти. Запоминание акустич. сигналов обусловлено наличием центров захвата электронов в полупроводнике и особенностью нелинейного взаимодействия волн. Согласно дисперсионной диаграмме (рис. 9), разность взаимодействующих волн (со , /с ) и (сОз 2) даёт сигнал с частотой СО3 = О (т. е. постоянный ток в течение времени взаимодействия волн) и волновым вектором = 2к — это означает, что ток неоднороден в пространстве. Неоднородный в пространстве постоянный ток создаёт объёмный неоднородный заряд на примесных состояниях (центрах захвата) полупроводника, соответствующий форме акустич. сигнала, к-рый будет существовать до тех пор, пока тепловые процессы не выравняют это неоднородное распределение. Т. о., время памяти определяется временем релаксации для примесных состояний полупроводников. Использование легированного кремния позволяет запоминать акустич. сигналы на время в несколько сотен мкс, а сернистого  [c.49]

Примесной проводимостью полупроводников называется их электропроводность, обусловленная внесением в их кристаллические решетки примесей примесных центров). Примесными центрами являются а) атомы или ионы посторонних химических элементов, внедренные в решетку полупроводника б) избыточные атомы или ионы элементов  [c.246]

Донор — это структурный дефект в кристаллической решетке полупроводника, способный отдавать электроны в зону проводимости или другим примесным центрам. Доноры, отдавая электроны, не участвующие в образовании химической связи, в зону проводимости, увеличивают концентрацию свободных электронов и уменьшают концентрацию дырок.В полупроводнике, содержащем донорные примеси, электрический ток переносится преимущественно электронами (электроны являются основными носителями заряда, а дырки — неосновными), обусловливая примесную электронную проводимость. Такой полупроводник называется полупроводником я-типа.  [c.117]

Акцептор — структурный дефект в кристаллической решетке полупроводника, способный присоединять к себе электроны из валентной зоны или с других примесных центров. Акцепторы, захватывая электроны из валентной зоны, увеличивают концентрацию дырок и уменьшают концентрацию свободных электронов. В полупроводнике, содержащем акцепторные примеси, электрический ток переносится преимущественно дырками (основными носителями заряда в нем являются дырки, а неосновными — электроны), обусловливая примесную дырочную проводимость. Такой полупроводник называется полупроводником р-типа.  [c.117]


В элементарных полупроводниках проявляются амфотерные примесные центры первых трех типов, а в полупроводниковых соединениях — все пять типов амфотерных центров.  [c.119]

Вопросы о том, какие именно примеси будут проявлять электрическую активность в том или ином полупроводнике и какие из них окажутся амфотерными, требуют специального анализа. К сожалению, ответы на эти вопросы нельзя получить исходя из простых представлений о свойствах примесного атома, основанных на близости геометрических (атомных или ионных радиусов) и электрохимических (электроотрицательностей) характеристик примесного атома и той кристаллохимической позиции, которую он занимает в полупроводнике. Ни тот, ни другой критерий не могут быть использованы для атомов переходных металлов (случай амфотерных узельных и амфотерных междоузельных центров) из-за неприменимости представления о радиусах и электроотрицательностях, как о постоянных атомных характеристиках [30]. Эти критерии оказываются неприменимы и для амфотерных диссоциативных примесей по тем же причинам, что и в предыдущем случае. Прогнозирование проявления амфотерных примесных центров всех типов в полупроводниках возможно только на основе строгой теории о узельной и междоузельной растворимости примесей в полупроводниках. Современному состоянию этой проблемы, различным подходам к ее рещению посвящена монография [31].  [c.120]

Примером простого донорного примесного центра в полупроводнике является кристалл кремния с одним атомным узлом, занятым атомом фосфора. Каждый атом в кристалле кремния образует ковалентные связи с четырьмя ближайшими соседями. Это означает, что атом фосфора обладает лишним валентным электроном, который не нужен для связи. Этот электрон непол1ностью свободен, так как ядро фосфора имеет больший положительный заряд, чем ядро атома кремния. Но лишний электрон связан со своим ядром недостаточно прочно, что позволяет ему перемещаться в окрестностях данного примесного центра. Для сохранения нейтральности примесного центра электрон должен л о к а- лизоваться в запрещенной зоне ниже дна зоны проводимости, т. е. электрон может перейти в нелокалйзованное бло-ховское состояние, получив дополнительную энергию не менее АЕй. Тогда донор становится ионизованным и ведет себя как локализованный положительный заряд.  [c.92]

Инжекция неосновных носителей происходит при подаче прямого смещення на р — п-переход, гетеропереход или контакт металл — полупроводник вследствие уменьшения разности потенциалов на контакте. Инжектированные неосновные носители проникают в полупроводник на глубину, определяемую рекомбинацией она по порядку величины совпадает с диффузионной длиной в слабых внеш. нолях и с дрейфовой длиной (см. Дрейф носителей заряда) в сильных полях. Инжекция неосновных носителей лежит в основе действия полупроводникового диода, транзистора и др, полупроводниковых приборов. Изучение стационарных и переходных процессов И. н. з. позволяет исследовать подвижности носителей, а также определить концентрации, энергетич. положения и сечения захвата примесных центров в высокоомных полупроводниках и диэлектриках. Прохождение инжекционных токов является одним из механизмов переноса заряда в тонких диэлектрич. плёнках.  [c.148]

В работе В. П. Жузе и С. М. Рывкина [348] рассмотрена возможность передачи энергии от основной решетки к примесным до-норным центрам в полупроводниках посредством экситонных ударов второго рода, в результате которых электрондэ переводятся в зону проводимости.  [c.252]

Фотопроводимость. Внутренний фотоэффект, или фотопроводимость, — это явление возникновения внутри полупроводника избыточных носителей тока под действием освещения. В простейшем случае собственного полупроводника излучение возбуждает валентные электроны в зоне проводимости, где они находятся в свободном состоянии и могут участвовать в процессе переноса заряда. Вклад в прО Зодимость дают также возникаюш,ие в валентной зоне дырки. В примесном полупроводнике -типа кроме собственного фотоэффекта возможно еще возбуждение электронов из связанных состояний на донорных центрах в зону проводимости. Аналогичным образом в полупроводниках р-типа возможно возбуждение электронов из валентной зоны на акцепторные уровни, создавая тем самым подвижные дырки. Характерно, что в обоих случаях" примесной фотопроводимости в кристалле генерируются свободные носители только одного знака. Так же, как и внешний фотоэффект, фотопроводимость проявляется в однородном материале в присутствии внешнего электрического поля.  [c.346]

При повышении концентрации примесных атомов электрон, локализованный вблизи одного из атомов примеси, начнет испытывать воздействие и со стороны других примесных атомов. В результате его энергетический уровень, оставаясь дискретным, несколько сдвйнется по энергии. Величина этого сдвига зависит от расположения других примесных атомов относительно центра локализации она тем больше, чем больше атомов примеси отстоит от центра на расстояние, не превышающее примерно Го (го — так называемый радиус экранирования, в случае слабо легированных полупроводников го>ав, где ав — радиус боровской орбиты в ир исталле см. гл. II, 8). Но распределение примеси в решетке никогда не бывает строго упорядоченным. Всегда имеют место локальные флюктуации концентрации. Поэтому и сдвиг энергии примесного уровня относительно дна свободной зоны Ес оказывается случайным и различным в разных точках образца. Это приводит к тому, что в запрещенной зоне вместо одного дискретного уровня появляется некоторый их набор. Такое явление называется классическим уширением уровней (см. рис. 44, б Ес—АЕ — энергия бывшего уровня примеси). Изложенная ситуация отв1бчает промежуточно легированному полупроводнику.  [c.120]

Из (12.26) следует, что для получения максимальной внутренней эффективности светодиода следует по возможности увеличить отношение вероятности излучательной рекомбинации к безызлуча-тельной. Безызлучательная рекомбинация, как правило, определяется в основном глубокими рекомбинационными центрами, излу-чательная же идет обычно в результате межзонных переходов (рис. 12.11, а), переходов из зоны проводимости на мелкие акцепторные уровни (рис. 12.11, 6) или с мелких донорных уровней в валентную зону (рис. 12.11, б). Вероятность безызлучательной рекомбинации можно уменьшить, очистив полупроводник от глубоких рекомбинационных центров. Сделать это очень трудно, так как сечение захвата носителей некоторыми примесными центрами, например медью, велико и требуется очень высокая степень очистки оттаких примесей. Поэтому качество светодиодов в значительной мере зависит от степени очистки исходных материалов и совершенства технологии изготовления диодов.  [c.332]


Носители заряда разогреваются не только пост, током, но также при поглощении ими эл.- магн. излучения, Возникающее при этом изменение электропроводности полупроводника представляет собой один из механизмов фотопроводимости ir используется для создания чувствительных приёмников излучения миллиметрового и субмиллиметрового диапазонов. Г. э. возникают также при генерации носителей заряда светом с энергией фотонов Доз, превышающей ширину запрещённой зоны g на величину, значительно б6льн1ую а также (в случае примесных полупроводников) светом с энергией фотонов, существенно превышающей энергию ионизации примесных центров (фоторазогрев). Часть фотоэлектронов, создаваемых в полупроводнике р-типа светом с рекомбинирует с дырками  [c.520]

НЧ-мода обусловлена колебаниями электронов проводимости или дырок. В случае полупроводника с одним типом изотропных носителей Шр находится из ф-лы (1), где т— эфф. масса носителей заряда, е — диэлект-рич. проницаемость полупроводника, п — концентрация носителей. Плазменные колебания в этом случае — колебания газа свободных носителей относительно хаотически расположенных в кристаллич. решётке ионн-зиров. донорных или акцепторных примесных центров. Энергии плазмонов Йш 0,01—0,1 эВ, что соответствует субмиллиметровому или ИК-диапазону. Такие илазмоны могут возбуждаться термически, причём подобно фононам они являются бозонами.  [c.602]

Рекомбинационные волны. Кроме свободных электронов и дырок, полупроводник содержит носители, захваченные глубокими примесными центрами, причём времена жизни электронов Тд и дырок Тд относительно их захвата различны. В результате, начиная с нек-рого, порогового значения д электрич. поля, в образце О04 возникают волны концентраций свободных и связан-  [c.604]

Локалкзованные состояния. Как и обычные полупроводники, П. п. могут быть легированы как донорами, так II акцепторами. Энергии локализованных примесных состояний в П. п. определяются не только кулоновским взаимодействием с потенциалом поля примесного центра, но и обменным взаимодействием с локализованными магнитными мо.чентами, расположенными внутри боровского радиуса примесного центра. Такое локализов. состояние наз. связанным магнитным поляроном. Вклад обменного взаимодействия в энергию локализов. состояния зависит от концентрации магн. ионов (т), темп-ры (Т)  [c.33]

Неравенство (5) является условием инверсии для межзонных переходов. Инверсия населённостей может быть получена и для переходов. между зоной и примесным уровнем или примесными зонами в легиров, полупроводниках, и даже между дискретными уровнями примесного центра (напр., П. л. на внутрицент-ровом переходе в 1пР, легированном Ре, работающий на длине волны 2,7 икм при 2 К). Созданы также излучатели когерентного дальнего ИК-излучения, работающие при низкой темп-ре в режиме коротких  [c.52]

РЕКОМБИНАЦИОННЫЕ ВОЛИЫ — волны концентрации носителей заряда в холодной биполярной плазме полупроводников во внеш. электрич. поле (см. Плазма твёрдых тел). Возникают спонтанно, когда электрич, поле превосходит нек-рое пороговое значение.. Р. в, проявляются как колебания тока в образце, к,к-рому приложено пост, напряжение. Условием существования Р. в. в полупроводнике является наличие как электронов, так и дырок, концентрации к-рых не должны сильно отличаться. Др, условие состоит в том, чтобы времена жизни т носителей были различными. Оба условия выполняются только при наличии глубоких примесных центров рекомбинации, уровни энергли к-рых располагают в ср. части запрещённой зоны полупроводника. Эти условия иллюстрируются диаграммой (рис.).  [c.320]

В непрнмоэонных полупроводниках наблюдается тай-же эфф. донорно-акцепторная рекомбинация, прй к-рой носители захватываются на свои примесные центры, а затем электрон переходит с донора на акцеитор в акте излучат, рекомбинации. Примером может служить рекомбинация на донорно-акцепторной napft Al — N в 6Н — SI и 4Н — SI , приводящая к иолу-чевию синего (Я акс 80 нм) и фиолетового (Х акс fs 423 нм) свечения.  [c.466]

При низких темп-рах Э. в полупроводниках легко связываются с атомом примеси, образуя связанные комплексы, к-рые также проявляются в спектре люминесценции. В многодолинных no.iyпроводниках, к-рые характеризуются наличием неск, экстремумов в зоне проводимости и в валентной зоне, образуются многочастичные экситонно-примесные комплексы—связанное состояние неск. Э, на одном примесном атоме. В непрямозонных полупроводниках (Ge, Si) возможно связывание на одном примесном центре до 4 Э. Причиной устойчивости многочастичных экситонно-примесных комплексов в непрямозонных полупроводниках (Ge, Si) является высокая степень вырождения зон.  [c.502]

Многочастичные экситонно-примесные комплексы могут служить центрами конденсации электронно-дырочной жидкости. Система неравновесных электронов и дырок в полупроводнике при низких темп-рах и достаточно малых концентрациях является диэлектрической благодаря образованию Э. и биэкситонов. С ростом плотности носителей заряда из-за экранирования кулоновского взаимодействия экситонный газ должен металлизоваться. При этом переход металл—диэлектрик происходит в том же диапазоне концентраций, что и переход экситонный газ — электронно-дырочная жидкость 1),  [c.503]

Заключение. ЭПР нашёл широкое применение в разл. областях физики, химии, геологии, биологии, медицине. Интенсивно используется для изучения поверхности твёрдых тел, фазовых переходов, неупорядоченных систем. В физике полупроводников с помощью ЭПР исследуются мелкие и глубокие точечные примесные центры, свободные носители заряда, носитель-примесные пары и комплексы, радиац. де( кты, дислокации, структурные дефекты, дефекты аморфизации, межслойные образования (типа границ Si — S1O2), изучаются носитель-примесное взаимодействие, процессы рекомбинации, фотопроводимость и др. явления.  [c.581]

Основной проблемой кремниевой оптоэлектроники является проблема создания эффективного источника излучения, роль которого выполняет светодиод или лазер. Кремний является непрямозонным полупроводником, и эффективность межзонной излучательной рекомбинации в нем очень низка. Определенным выходом из этого положения является легирование кремния эрбием, примесью, которая формирует в кристаллической решетке эффективные центры излучательной рекомбинации с участием 4f электронов примесного атома. В процессе такой рекомбинации генерируется излучение с длиной волны 1,54 мкм, для которого сам кремний практически прозрачен и которое также соответствует окну максимальной прозрачности оптических волноводов из кварцевого стекла. К сожалению, растворимость Ег в Si составляет всего см (при 1300 °С). Этого явно недостаточно для получения интенсивного излучения. Для увеличения содержания Ег в кристаллической решетке используют неравновесные методы получения сильнолегированных кремниевых слоев — ионную имплантацию, молекулярно-лучевую эпитаксию, ионно-лучевое напыление и др. Увеличению содержания Ег в слое способствует и дополнительное его легирование кислородом или фтором, с которыми эрбий образует достаточно стабильные комплексы. На сегод-  [c.96]

Поверхностная р е к о м б и н а ц,и я. В большинстве полупроводников рекомбинация электронов и дырок происходит гл. обр. через примесные центры, поэтому на поверхности, где сконцентрировано большое число поверхностных состояний, она происходит более интенсивно. При не очень большой высоте потенциального барьера и невысокой концентрации поверхностных центров рекомбинации скорость поверхностной рекомбинации S зависит только от состояния поверхности, в частности от фз. Поэтому, изменяя ф8, напр, с номон1ью эффекта ноля, можно изменять S. Совместное определение S (ф ) и Qs (9s) помощью эффекта ноля дает возможность определить все параметры поверхностных центров рекомбинации (энергию, концентрацию, сечения захвата электронов и дырок).  [c.62]


Неадиабатическое электронно-колебательное взаимодействие. Неадиабатическое электронно-колебательное взаимодействие также приводит к температурному сдвигу и температурному уменьшению времени жизни электронного уровня, тем самым и к уширению чисто-электрон-ной линии и ее колебательных повторений. Неадиабатическое уширение может иметь ярко избирательный характер в случае совпадения энергий некоторых колебательных подуровней двух (и более )электронных состояний, когда возникает ситуация, близкая к состоянию преддиссоциации в молекулах. Расчет для мелких электронных ловушек в полупроводниках, глубина которых сравнима с энергиями предельных оптических фононов и где, следовательно, учесть неадиабатичность необходимо, проведен в работе [130]. Аналогичное рассмотрение выполнено также Кривоглазом [131]. Однако и в случае глубоких локальных состояний электронов в примесных центрах ионных кристаллов неадиабатичность, являющаяся здесь обьпсно малой поправкой, может ярко проявляться из-за чрезвычайной чувствительности чисто-электронной линии в случае малого изменения упругих постоянных при электронном переходе она может играть роль основной причины температурного уширения чисто-электронной линии. Это в особенности существенно в тех случаях, когда поблизости от возбужденного электронного уровня имеются другие электронные состояния, например, если соответствующий электронный уровень расщеплен на компоненты, расстояния между которыми порядка 10" эв. В работе Б. 3. Малкина [93] показано, что, исходя из предположения о неадиабатической связи между возбужденными уровнями Сг , как причине температурного сдвига и уширения / -линии рубина, можно прийти к согласующимся с экспериментом выводам.  [c.38]

Для первых двух типов амфотерных центров характерно проявление амфотерности в одной и той же кристаллической позиции. В этом случае примесный центр должен имеет возможность как отдать электрон из какой-либо своей электронной оболочки в зону проводимости полупроводника, так и захватить электрон на эту оболочку. Очевидно, что обе эти возможности у одного и того же атома, первоначально находящегося в зарядовом состоянии 2о, могут быть реализованы только, если его работающая электронная оболочка заполнена не полностью. А это могут быть лищь атомы с1- или /-элементов. Экспериментальные данные подтверждают это правило. Но, как показывает опыт, во многих случаях примеси переходных металлов не проявляют свойства амфотерности. Примеси же /-атомов часто вообще электрически нейтральны.  [c.119]

Амфотерные примесные центры третьего типа — диссоциативные — встречаются чаще всего в элементарных полупроводниках. Из общих соображений ясно, что для равновероятного размещения примесного атома в узле и междоузлии требуются примерно равные энергии их введения в обе позиции. Однако вычисление этих энергий наталкивается на ряд трудностей, связанных прежде всего с различием взаимодействий примесного атома с окружающими атомами кристалла. В узле примесный атом вступает в химическую связь с окружающими атомами кристалла. В междоузлии же электроны окружающих атомов лищь отталкивают электроны примесного атома и поэтому химических связей между атомами окружения и примесным центром не возникает.  [c.119]

АЭВ приводит к ряду нелинейных акустич. эффектов, к-рые особенно заметны в пьезополупроводниках к генерации акустич. гармоник и встречному вз-ствию УЗ волн, к-рое позволяет осуществлять свёртку, корреляцию и обращение во времени УЗ импульсов, что находит применение в устройствах акустоэлектроники. АЭВ объясняет эффект акустоэлектрического (фононного) эха и акустич. памяти . Неоднородное электрич. поле с частотой =0, возникающее прп встречном вз-ствии УЗ волн, приводит к перераспределению зарядов на примесных центрах, что позволяет записать и запомнить УЗ сигнал. Электрич. или УЗ импульс, приложенный к кристаллу, через нек-рое время считывает записанную информацию. Подобные эффекты для ПАВ наблюдаются в слоистых структурах пьезоэлектрик — ПП и находят применение в акустоэлектронике. фПустовойт в. и.. Взаимодействие электронных потоков с упругими волнами решетки, УФН , 1969, т. 97, в. 2, с. 257 Тру ЭЛ л р., ЭльбаумЧ., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972 Г у р е вичВ.Л., Теория акустических свойств пьезоэлектрических полупроводников, ФТП , 1968, т. 2, Ха 11, с. 1557 Гуляев Ю. В.,К нелинейной теории усиления ультразвука в полупроводниках, ФТТ , 1970, т. 12, Гв. 2, с. 415. В. Е. Лямов.  [c.18]

В полупроводниках имеются также примесные уровни, значительно удаленные и от начала зоны проводимости и от конца валентной зоны. Эти глубокие уровни могут быть как донорами, так и акцепторами электронов. Поскольку нх энергия ионизации велика, они не вносят существенного вклада в концентрацию носителей за счет обычной термической ионизации, но могут служить ловушками (такими же, как неглубокие уровни обычных примесей) при компенсации избыточных доноров и акцепторов или же центрами рекомбинации в полупроводниках. Иногда, например при поглощении света, электроны переходят из валентной зоны в зону проводимости, что приводит к избыточной, неравновесной концентрации носителей, электронов и дырок, которые в конечном итоге рекомбинируют. При малых избыточных концентрациях скорость рекомбинации пропорциональна концентрации носителей, и их число убывает во времени по закону ег 1 , где X —константа, называемая врелшВремя жизни при прямой рекомбинации может быть довольно большим вследствие необходимости одновременного выполнения двух законов сохранения энергии и импульса. Поэтому часто рекомбинация протекает с большей скоростью путем захвата носителей одного знака атомами примесей с более глубокими уровнями и последующей рекомбинацией носителями противоположного знака. Примером примесных уровней, которые служат центрами рекомбинации, являются уровни меди и никеля в германии. Процесс рекомбинации чрезвычайно чувствителен к наличию определенных примесей одна часть никеля на миллиард частей германия уменьшает время жизни носителей на один-два порядка.  [c.74]

Кристаллические лазеры —это люминофоры, обладающие особыми свойствами. Квант света, излучаемый одним возбужденным центром, вызывает излучение центров в той же фазе, что и первый. Процесс возбуждения центров идет независимо (для этого часто используют обычный дневной свет), вследствие чего поддерживается постоянной населенность высших электронных состояний. Правильный выбор формы кристалла и высокая степень когерентности излучения позволяют получить полностью монохроматическое и острофоку-сированное излучение. Различают две группы кристаллических лазеров. В кристаллах первой группы активны лишь ионы примеси редкоземельных или переходных металлов, сам же кристалл служит лишь инертной матрицей (например, в рубине это ион в матрице А12О3). Вторую группу составляют полупроводники, такие, как ОаЛз, в которых происходит излучение вследствие рекомбинации электронов и дырок на примесных центрах, если концентрация электронов и дырок намного превышает равновесную.  [c.80]


Смотреть страницы где упоминается термин Примесные центры в полупроводник : [c.584]    [c.32]    [c.214]    [c.656]    [c.435]    [c.643]    [c.466]    [c.12]    [c.348]    [c.349]    [c.511]    [c.490]    [c.495]    [c.829]   
Модели беспорядка Теоретическая физика однородно-неупорядоченных систем (1982) -- [ c.128 ]



ПОИСК



Полупроводники

Полупроводники примесные



© 2025 Mash-xxl.info Реклама на сайте