Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорости — Зависимость от напри

Простейшая обработка данных СП заключается в расчете для каждого ПВ векторных диаграмм (индикатрис) скорости из предположения прямолинейном пути распространения волны от источника до приемника. Закономерные изменения скорости в зависимости от направ-  [c.103]

Скорость процессов механического разрушения нагруженного твердого тела и соответственно время до разрушения зависят от структуры и свойств тела, от напрял<ения, вызываемого нагрузкой, и температуры. Существует ряд эмпирических формул, описываюш,их зависимость времени до разрыва т (или скорости разрушения Ое)от этих факторов. Наибольшее применение получила установленная экспериментально для многих материалов (чистых металлов, сплавов, полимерных материалов, органического и неорганического стекла и др.) зависимость  [c.21]


В соответствии с характеристиками веществ рассматривают С. капельной жидкости, газа, плазмы. В особый класс выделяются двухфазные С., напр, газовые, содержащие жидкие или твёрдые частицы, или С, жидкости, заполненные пузырьками газа. Для С. сжимаемых газов существенным является отношение скорости газа на срезе сопла к скорости распространения звуковых волн а, т. е. Маха число M = v ja. В зависимости от значения Л/ различают С. дозвуковые (М< ) и сверхзвуковые (М> ). Аналогичная классификация в зависимости от числа М проводится и для скорости среды, в к-рую вытекает С.  [c.12]

Местное напрял ение а, скорость ползучести г и предел текучести (пропорциональности) являются зависимыми от времени  [c.269]

Рис. 39. Сопоставление зависимостей от деформации касательного и разности нормальных напрял<ений при двух скоростях деформаций для раствора нафтената алюминия Рис. 39. Сопоставление зависимостей от деформации касательного и разности нормальных напрял<ений при двух <a href="/info/420">скоростях деформаций</a> для раствора нафтената алюминия
Фиг. 20. Поляризационная диаграмма, характеризующая различную скорость растворения основного металла и надрезов, в которых локализуется коррозия под напрял ением в зависимости от значения общего стационарного потенциала, сообщенного окис-лительно-восстановительной системой, присутствующей в рас творе. Фиг. 20. <a href="/info/6516">Поляризационная диаграмма</a>, характеризующая различную <a href="/info/116228">скорость растворения</a> <a href="/info/384895">основного металла</a> и надрезов, в которых локализуется коррозия под напрял ением в зависимости от значения общего <a href="/info/39792">стационарного потенциала</a>, сообщенного окис-лительно-восстановительной системой, присутствующей в рас творе.
В основу принципа саморегулирования положена постоянная скорость подачи электродной проволоки вне зависимости от напря-исения, тока сварки или длины дуги. Устойчивость процесса сварки обеспечивается изменением скорости плавления электродной проволоки при случайных колебаниях тока дуги, которые происходят при изменении ее длины. I aждoй фиксированной скорости подачи электродной проволоки соответствует свой режим горения дуги, при которой скорость подачи равна скорости плавления металла. При неболшиом изменении длины дуги меняются режим плавления электрода и упомянутые две скорости. В результате длииа дугового промежутка начнет восстанавливаться скорость этого восстановления  [c.141]


Если же плотность тока в электроде мала, то для быстрого восстановления заданного режима используют автоматы с принудительным регулированием скорости подачи электродной проволоки в зависимости от напря-  [c.394]

Меисду размером и значением физической величины имеется принципиальная разница. Размер величины существует реально, независимо от того, знаем мы его или нет. Один и тот же размер величины может быть выражен различными значениями физической величины в зависимости от выбора ее единицы. Напри.мер, значение скорости 72 км/ч и 20 м/с выражает один и тот же размер. Величины, отражающие одно и то же свойство объекта, называют однородными. Они отличаются друг от друга только числовым значением.  [c.247]

Рис. И.8. Зависимость касательного напря.Кения от градиента скорости Рис. И.8. Зависимость касательного напря.Кения от градиента скорости
В однородных средах Д. з. обусловлена релаксац. процессами, идущими на молекулярном уровне локально, т. в. в каждом элементе среды, независимо от др. элементов. В микроиеоднородных средах, где ра. нмор неоднородностей I и расстояния между ними малы по сравнению с длиной звуковой волны X (напр., взвеси, эмульсии, жидкости с газовыми пузырьками, поликристаллы — в области звуковых и УЗ-частот), могут иметь место и нелокальные релаксац. процессы, заключающиеся в обмене энергией между разнородными комполен-тами среды. Отставание изменения объема, связанного-с релаксац. процессом, от изменения давления в звуковой волне приводит к зависимости скорости звука с от отношения характерного времени процесса т к периоду звуковой волны (от величины сот, где ю — частота звука). Эта зависимость и определяет релаксац. Д. з.  [c.646]

Жаропрочность — способность материалов работать длит, время не деформируясь и не разрушаясь при приложенных нагрузках и высоких темп-рах, Осн. характеристиками жаропрочности являются предел ползучести и длит, прочность. Предел ползучести, т. е. величину напряжений, при к-рой скорость ползучести не превышает заданного значения, определяют для каждой гемп-ры из зависимости скорости установившейся ползучести от напряжений. Аналогично этому, величину длит, прочности материала для заданной темп-ры определяют из зависимости времени до разрушения от напряжений. Напр., устанавливают напряжение (или нагрузку), при к-ром разрушение при заданной. пост, темп-ре Т происходит за 100 ч (оу).  [c.130]

До 1986 поля Н II обычно использовались для того, чтобы замедлить и сделать наблюдаемыми процессы быстрой деполяризации мюонов за счёт взаимодействия с электронами среды. Дальнейшим развитием метода МСР послужили эксперименты по определению расщепления энергетических уровней мюона в веществе, напр. при взаимодействии с квадрупольными моментами ядер решётки (см. Ядерный квадруполъный резонанс). Когда энергия зеемановского расщепления для мюона при увеличении Я сравнивается с суммой зеемановской энергии ядра и энергии квадрупольного расщепления, становится возможны.м взаимный переворот спинов мюона и ядра (flip — flop). При этом деполяризация резко ускоряется. Зависимость скорости релаксации Л от внеш. поля Н носит резонансный характер.  [c.228]

Интересными особенностями обладают Н. я. в п., связанные с фазовой памятью частиц, напр. явление плазменного эха. Суть его состоит в следующем. Возбуждённая в к.-л. точке пространства ленгмюровская волна затухает при распространении вследствие затухания Ландау. В любой точке, где первая волна уже затухла, возбудим на другой частоте другую волну, к-рая также затухнет на определ. расстоянии. После затухания первой и второй волн через определённые пространственные интервалы можно наблюдать вспышки ВЧ-колебаний на комбинац. частотах, это и наз. плазменным эхом. Появление эха можно пояснить на простом примере. Если в точке г — О внеш. источником возбуждается электрич. поле с частотой oi tOj (напр., с шмощью сетки), то это поле модулирует тепловые патоки частиц так, что ф-ция распределения электронов пропорциональна б/i exp[ i ji(i — з/е) . Такое распределение электронов создаёт эле1 трич. поле лишь в районе г = О и нуль во всём остальном пространстве. Если в точке z — d стоит аналогичная сетка, модулирующая потоки частиц с другой частотой (Oj > соо, тогда б/а ехр гсОг[< — (г — d)lv . Здесь также из-за быстрых осцилляций ф-ции распределения поле всюду, кроме z — d. отсутствует. Однако нелинейный отклик ф-ции распределения, который пропорционален б/ -б/з, даёт ненулевое поле в точке Z — —(Oj), т. к. здесь зависимость от скорости  [c.317]


Н. д. газа или жидкости можно разделить на движение с большими изменениями скорости и давления в зависимости от времени t и движение, когда эти изменения невелики. Течения первого типа обычно встречаются при переходных процессах, напр. при движении тела из состояния покоя до нек-рой конечной скорости, при выходе потока из сопел двигателей и аэродинамич, труб на режим с пост, скоростью течения и др. В течениях второго типа скорости и давления меняются во времени периодически или случайным образом, как, напр., при распространении акустич. волн. Наряду с пульсациями давления акустич. типа в жидкости или газе возникают пульсации давления гидродинамич. типа (псевдозвук), напр. пульсации давления в турбулентном пог-  [c.337]

Тип критич. структуры определяется соотношением между скоростью активной (г) и аккомодационной (е ) пластич. деформациями. Поскольку а — термически активируемая и структурно-чувствит. величина, тип критич. структуры при заданной зависит от темп-ры испытания, вида упругонапряжёвного состояния и отчасти исходной структуры. В материалах со слабой температурной зависимостью ёд (напр., металлы с ГЦК решёткой) критич. структура совпадает с раз-  [c.635]

Р. д.— метастабильвые образования, их концентрацию II природу можно изменить нагревом (термин, отжиг дефектов). Такая термообработка иногда может сопровождаться полным восстановлением исходной структуры. В то же время в зависимости от условий отжига (темп-ра, скорость её пз.менения, время, газовая среда, характер возбуждения электронной системы атомов и дефектов) квазихим. реакции могут сопровождаться появлением новых типов дефектов. Напр,, типичный для технологии микроэлектроники отжиг бездисло-кационного. Si, имплантированного большими дозами ионов Р, сопровождается образованием дислокаций, илотность к-рых особенно высока, если нагрев осуществляется в окислит, атмосфере. При термич. отжиге Р. д. приобретают энергию, достаточную для разрыва связи между ними, миграции освободившихся частиц и протекания реакций с их участием.  [c.204]

САМОДИФФУЗИЯ — частный случай диффузии в чистом веществе или растворе пост, состава, при к-рой диффундируют собств. частицы вещества. При С. атомы, участвующие в диффуз. движении, обладают одинаковыми хим. свойствами, но могут отличаться, напр., атохшой массой, т. е. быть разными изотопами одного элемента. За процессом С. можно наблюдать, применяя радиоакт. изотопы или анализируя изотопный состав вещества на масс-спектрометре. Изменение изотопного состава в зависимости от времени описывается обычными ур-ниями диффузии, а скорость процесса характеризуется определ. коэф. диффузии. Диффуз. перемещения частиц твёрдого тела могут приводить к изменению его формы и др. явлениям, если на тело длительно действуют силы поверхностного натяжения, тяжести, упругие, электрич. силы и др. При этом наблюдаются сращивание пришлифованных образцов одного и того же вещества, спекание порошков, растяжение тел под действием подвешенного к ним груза (диффуз. ползучесть материалов) и т.д. Изучение кинетики этих процессов поз- воляет определить коэф. С. вещества.  [c.409]

В ИК-области, когда б = с/Ыр, нелинейные изменения происходят при 1Р18л й Nm , когда носителей в скин-слое толщиной с/Шр не хватает для переноса тока даже при их движении со скоростью, близкой с. В результате глубина проникновения поля увеличивается (чтобы повысить число носителей) до необходимой для поддержания тока б = H/inNe. В области высоких частот ш Шр толщина скин-слоя в плазме может как уменьшаться, так и возрастать в зависимости от знака нелинейного вклада в диэлектрич. проницаемость. В Отличие от линейного режима, в случае нелинейного С.-э, при медленном увеличении напряжённости поля оно, начиная с аек-рой пороговой амплитуды, проникает в глубь плазмы на расстояние, определяемое диссипативным затуханием. (Это происходит при положит, нелинейном вкладе.) В случае достаточно слабой диссипации нелинейное проникновение поля в плазму может носить характер гистерезиса, т. е. зависеть от предыстории процесса. Напр., для плазменного слоя конечной толпщны эффективность Т проникновения эл.-магн. волны через слой, измеряемая отношением потоков энергии после слоя и перед ним, является неоднозначной ф-цией интенсивности падающей волны / (как схематически показано на рис.).  [c.542]

В зависимости от направления скорости течения газа (жидкости) в окружающей среде различают С., вьггекаю-щие в спутный (направленный в ту же сторону), встречный и сносящий потоки напр., С. жидкости, вытекающая нз трубы в реку и направленная соответственно по течению, против течения и под углом к скорости течения реки). Если состав жидкости (газа) в С. и окружающей её неподвижной среде идентичен, С. наз. затопленной (напр., С. воздуха, вытекающая в неподвижную атмосферу). С. наз. свободной, если она вытекает в среду, не имеющую ограничивающих поверхностей, полуограниченной, если она течёт вдоль плоской стенки, стеснённой, если вытекает в среду, ограниченную твёрдыми стенками (напр.. С., вытекающая в трубу большего диаметра, чем диаметр сопла).  [c.12]

На рис. 196, 197 в двойных логарифмических координатах представлены диаграммы зависимости скоростей ползучести от напря-  [c.357]

Работа схемы управления автоматами основана на принцип зависимости скорости подачи электродной проволоки от напря жения дуги. Токоподвод в зоне сварки защищен водоохлаждае мым соплом, в которое поступает углекислый газ.  [c.160]

Сравнению е ползучестью 2) различная интенсивность старения и др. структурных процессов в условиях Р. (при падающем напряжении) и при ползучести (при практически постоянном среднем напряжении). Скорость Р. характеризуется временем Р., за к-рое релаксирующая величина уменьшается в е(а 2,7) раз. В теле может происходить одновременно несколько процессов Р. физяч. и физико-химич. св-в (в зависимости от состава, структуры, темн-рных, магнитных и электрич. полей и т. д.). Напр., в неравномерно упруго-деформированном теле Р. может происходить также путем уменьшения неравномерности гемп-ры (к-рая возникает при охлаждении растянутых и пагрева сжатых зон), путем диффузии более крупных атомов в растянутые, а более мелких — в сжатые зоны и от др. причин. Совокупность времен релаксации (или их обратных значений) образует релаксационный спектр данного материала. Процесс Р. в поликристаллах и вообще в материалах с зернистой структурой б. ч. проходит активнее по поверхностям раздела (зерен, блоков мозаичной структуры, поверхностям сдвигов и т. д.). Поэтому, так же как и для диффузии, различают пограничную и объемную Р. Т. к. правильность строения обычно убывает от середины к краю зерен, то степень неупорядоченности приграничных зон б. ч. выше, а энергия активации — соответственно меньше, чем внутренних зон. Вблизи границ зерен и происходит пограничное вязкое течение, вызывающее Р. напряжений. С повышением темп-ры испытания растет скорость диффузии и падает коэфф. вязкости, что сильно увеличивает скорость Р. (снижает сопротивление Р.). Если для обнаружения Р. при 20° у стали требуются испытания продолжительностью в тысячи часов, то при высоких темп-рах Р. проявляется уже за минуты и быстрее. Если считать тело до нагружения находящимся в равновесии, то с ростом приложенного напряжения неравновесность папряженного образца увеличивается и скорость Р. растет. Чем выше темп-ра испытания, тем сильнее возрастает скорость Р. с увеличением исходного напряжения. Как правило, с ростом времени скорость релаксации постепенно уменьшается, что соответствует подобному же уменьшению скорости при переходе от неустановившейся к установившейся (или от I ко II периоду) ползучести. Что касается III (ускоренного) периода, к-рый наблюдается при ползучести вследствие развития трещин и повышения локальных напряжений, то в условиях Р. при снижающихся средних напряжениях обычно скорость процесса постепенно уменьшается. Однако в нек-рых случаях, нанр. при интенсивных фазовых превращениях, когда выделяются крупные сферо-идизированные частицы о-фазы при 650— 700°, у пек-рых аустенитных сталей с резкой структурной нестабильностью после значительного времени скорость Р. может возрастать, приводя к т. н. III периоду Р. Т. о., Ill (ускоренный) период Р. яв-  [c.137]


В соответствии с др. теориями, физич. природа процесса усталости отлична от природы статич. наклепа. Образование микроскопич. трещин при циклич. нагрузках рассматривается в этом случае как процесс постепенного ослабления межатомных связей и развития необратимых повреждений в определенных участках структуры (напр., на границах мозаичных блоков). Модель неоднородного упруго-пластич. деформирования конгломерата случайно ориентированных кристаллов послужила основой для теорий усталостного процесса как в детерминированной, так и в вероятностной трактовке. При напряжениях, не превосходящих предела текучести металла, усталостные процессы связаны лишь с явлениями местной пластич. деформации, не проявляющейся макроскопически, и рассматриваются как квази-упругие. Числа циклов, необходимые для усталостного разрушения при таких уровнях напряженности, измеряются сотнями тыс. и млн. При напряжениях, превосходящих предел текучести, явления усталости сопровождаются макросконическими пластич. деформациями и рассматриваются как упруго-пластические. Число циклов, необходимое для разрушения в этой области, измеряется сотнями и тысячами. В зависимости от условий протекания процесс У. может также сопровождаться фазовыми превращениями в металлах. Так, при новы-шенных темп-рах происходит выделение и перераспределение упрочняющих фаз при переменном нагружении, что иногда приводит к ускоренному ослаблению границ зерен, и при длительной работе трещины усталостного разрушения возникают в этом случае на границах зерен. Физико-химич. превращения в структуре наблюдались также и при комнатной темп-ре при циклич. напряжениях выше предела У. Стадия усталостного разрушения, связанная с развитием трещины, возникает на разных этапах действия переменных напряжений. При большой структурной неоднородности, свойственной, например, чугунам, в местах включений графита система микротрещин возникает задолго до развития магистральной трещины, приводящей к окончательному усталостному разрушению. Для структурно более- однородных металлов, напр, конструкционных сталей, образованию отдельных микро-, а потом макротрещин предшествуют длительно накапливающиеся изменения, и трещины возникают на относительно поздних стадиях, развиваясь с нарастающей скоростью.  [c.383]

На рис. 155 и 156 представлены характерные зависимости скорости роста трещины от коэффициента интенсивности напря-  [c.372]

Для построения графиков. служат первичные кривые ползучести, полученные для ряда напряжений при данной температуре. Графики строят в логарифмической или полулогарифмической системе координат, используя степенную (1) или экспоненциальную (2) зависимости скорости ползучести 2 на прямолинейном участке от напря-жения а  [c.125]

Напряжение трения на контактной поверхности калибрующего пояска Тп -находится в пря.мой зависимости от прочностных свойств прессуемого металла в его состоянии (степень я скорость деформации) у выхода из обжимающей части очага деформации, характеризуемых максимальным сдвигающим напря жением Кы к- В связи с этим принимаем  [c.200]

Общий высокий отпуск сварных конструкций. Этим методом могут быть снижены остаточные напряжения на 85—90%. Операция отпуска состоит из четырех стадий нагрева, выравнивания температуры по объему детали, выдержки и охлаждения. Продолжительность нагрева выбирается в зависимости от мощности печи и допускаемой скорости возрастания температуры. Для пластичных металлов скорость нагрева может достигать нескольких сотен градусов в 1 ч. Продолжительность выравнивания температуры зависит от размеров детали. Наиболее распространенная температура выдержки 550—680° С. Продолжительность выдержки выбирается в соответствии с необходимой степенью снижения остаточных напря кений. При высоких температурах отпуска остаточные напряження эффективно снижаются в процессе нагрева. Для конструкционных сталей снижение одноосных напряжений в процессе нагрева может быть описано уравнением  [c.88]


Смотреть страницы где упоминается термин Скорости — Зависимость от напри : [c.332]    [c.313]    [c.165]    [c.324]    [c.644]    [c.688]    [c.350]    [c.345]    [c.348]    [c.597]    [c.599]    [c.166]    [c.211]    [c.411]    [c.528]    [c.124]    [c.51]    [c.111]    [c.248]    [c.185]    [c.134]    [c.109]    [c.80]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



Скорости — Зависимость от напри жеинй и температуры



© 2025 Mash-xxl.info Реклама на сайте