Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система хром — углерод

СИСТЕМА ХРОМ —УГЛЕРОД  [c.18]

На рис. 4 показана современная диаграмма состояния системы хром—углерод [34 ]. Общепризнано, что в этой системе образуются  [c.25]

Рис. 4. Диаграмма состояния системы хром—углерод Рис. 4. <a href="/info/166501">Диаграмма состояния системы</a> хром—углерод

В [19] дано решение этой системы при граничных и начальных условиях, соответствующих насыщению двойного сплава Ме—С некарбидообразующим и карбидообразующим элементами. При насыщении сплава такими элементами распределение концентрации углерода в диффузионном слое имеет экстремум (рис. 42). Например, при насыщении кремнием в приповерхностном слое сплава Fe — С возникает область с избыточной концентрацией углерода, при насыщении хромом обедненная углеродом область.  [c.106]

Практически все технические сплавы железа с хромом содержат углерод. Последний вносит в структуру двойной системы ряд существенных изменений. Углерод принадлежит к элементам, способствующим расширению -области, и требуется более высокое содержание хрома, чтобы получить устойчивую ферритную структуру. Так, содержание углерода в 0,25% расширяет Т-область до 20—21 % Сг 0,4% С — до 27—28 /о Сг.  [c.113]

Это же относится и к исследованиям, планируемым для контроля однородности конечного продукта. Учет физико-химических и физико-механических особенностей исходного материала часто позволяет уменьшить объем эксперимента, обеспечивая вместе с тем контроль наиболее слабых звеньев цепи. Во многих случаях оказывается возможным отказаться от измерения неоднородности всех аттестуемых компонентов и сосредоточить усилия на доказательном подтверждении качества материала на основе контроля распределения компонентов — индикаторов однородности [1, 59, 60]. Ими могут служить наи- более ликвирующие или летучие компоненты, сравнительно труднее растворяющиеся, хуже прочих дробящиеся, образующие обособленные составляющие и т. д. Иногда наблюдалась существенная неоднородность распределения компонента, отнесенного к числу благополучных , исходя из физико-химических особенностей (в работе [6] — исходя из диаграммы состояния системы хром — железо ). Это связано, по-видимому, с неполным учетом всех обстоятельств в приведенном примере — возможности неравномерного распределения хрома, вводимого в металлический расплав в виде тугоплавкого ферросплава, карбидной ликвации вследствие наличия углерода в системе и др. Подобные случаи свидетельствуют не против уче- та закономерностей образования неоднородности, а о том, что он должен быть максимально полным и всесторонним.  [c.132]

Проверенная в последнее время [1] с помощью термического и микроскопического анализов диаграмма состояния сплавов системы хром — углерод изображена на  [c.494]

Рис. 64. Диаграмма состояния системы хром — углерод Рис. 64. <a href="/info/166501">Диаграмма состояния системы</a> хром — углерод

Различия коррозионного поведения и механических и технологических свойств хромистых сталей в первую очередь определяются содержанием в них хрома и углерода. Поэтому классификацию и разбор различных классов хромистых сталей целесообразно провести, исходя из их местонахождения на структурной диаграмме хром — углерод для системы Ре—  [c.480]

Материалы, входящие в I группу (см. табл. 1), относятся к системе железо—углерод—хром. На рис. 13 нанесены границы структурных областей сплавов этой системы для равновесного состояния. На поле этой диаграммы расположены все испытанные нами материалы I группы. Поскольку состояние этих материалов не является равновесным, указанные структурные границы надо в данном случае считать условными. Кал<дому материалу на этой диаграмме соответствует точка (кружок), рядом указаны № материала (в числителе) и величина относительной износостойкости (в знаменателе), определенная на машине Х4-Б. Материалы на диаграмме (рис. 13) можно разделить на три подгруппы 1) 5—  [c.36]

Железо-хром-углерод, система — Изотермическое сечение 3 — 336 Желоба пневматические транспортные 9 — 1146  [c.77]

Принятая государственными стандартами СССР система обозначения марок стали даёт возможность легко установить химический состав данной марки стали. В этой системе двузначные числа с левой стороны букв в обозначениях марки стали показывают среднее содержание углерода в сотых долях процента, а буквы справа от этих чисел обозначают Г—марганец, С— кремний. X—хром, Н—никель, В — вольфрам, Ф—ванадий, М —молибден, Ю—алюминий цифры после букв обозначают процентное содержание соответствующего элемента в целых единицах. Обозначения марок высококачественной стали, более чистой по сравнению с качественной в отношении серы и фосфора и с повышенными механическими свойствами, дополняются буквой А в конце обозначения.  [c.359]

В контурах с кипением калия выделения растворенных веществ наблюдаются главным образом на границе жидкой и паровой фаз. Выщелачиванию в таких системах подвержены металлические (никель, хром) и неметаллические составляющие материалов (например, углерод в виде карбидов).  [c.293]

Исследования кинетики процесса окисления углерода и хрома показали, что на границе пузырька и металла имеет место изменение концентрации элементов. Так, по данным Г. Кинга [34], при содержании хрома на границе раздела 5% и температуре 1700°С его концентрация в объеме металла составляет 5,5%, углерода соответственно 0,09 и 0,2%, кислорода 0,05 и 0,03%. Когда в металле остается 0,1% С и 5% Сг, система оказывается очень близкой к равновесной и скорость окисления углерода должна стать совсем низкой. При поступлении газообразного кислорода с той же скоростью начинается преимущественное окисление хрома. Лишь повышая тем-пературу или снижая давление СО с помощью вакуумной обработки или разбавления инертным газом, можно  [c.61]

Другой вид наплавочных материалов отличается высоким содержанием углерода (1,0... 1,4 %) и системой легирования хромом (до  [c.131]

В системе тройных сплавов железо — углерод — хром, как показывает фиг. 187, присутствуют следующие сложные карбиды 1) (РеСг)зС 2) (РеСг),Сз 3) (РеСг>4С, затем а-фаза и а-твердый раствор хрома в железе. Следовательно, в стали хром является карбидообразующим элементом и одновременно в значительном количестве растворяется в феррите. Углерод в хромистых сталях расширяет замкнутую Y-область. Твердость карбидов хрома способствует высокой  [c.313]

Глава и СИСТЕМА ЖЕЛЕЗО—ХРОМ—УГЛЕРОД  [c.25]

По системе упрочнения высоколегированные стали и сплавы делят на карбидные, содержание углерода 0,2—1,0%, боридные (образуются бориды железа, хрома, ниобия, углерода, молибдена и вольфрама), с интерметаллидным упрочнением (упрочнение мелкодисперсньши частицами).  [c.120]

Сг углерода сильно изменяет структуру сплава. Углерод способствует расширению у-области, и чем больше содержится в сплаве углерода, тем больше хрома надо ввести в сплав, чтобы получить устойчивую ферритную структуру, как это видно из фиг. 163. Соотношение между количествами углерода и хрома определяет структурные особенности двойной системы Ре—Сг. Углерод образует с хромом ряд весьма прочных соединений сложных карбидов и по этой причине уменьшается концентрация хрома в твердом растворе. В тройной системе Ре—Сг—С преимущественно образуются сложные химические соединения типа (СгРе)2зСе и (СгРе)7Сз. Количество карбидов и их состав зависят от содержания углерода. Карбиды растворяются в более или менее значительных количествах в у-фазе и в очень малых количествах в а-фазе.  [c.195]


ХРОМ, Сг, химич. элемент VI группы перио- дич. системы (аналог молибдена, вольфрама и урана) ат. в. 52,01 изотопы 50 (4,9%), 52 <81,6%), 53 (10,4%) и 54 (3,1%) порядковое чис-J O 24. X.—белый блестящий металл. Твердость весьма значительна—режет стекло содержание углерода (l,5-f-3%) повышает твердость до 9 (по Мосу). Кристаллизуется X. в кубич. системе (пространственно-центрированный куб, радиус атома 1,25 Л). Уд. в. б,9- 7,2. Вследствие затруднительности получения абсолютно чистого X. данные о колеблются в пределах 1 520 -М 765° 2 200°. В отношении химич. свойств X. характеризуется большой стойкостью. В сухом и влажном воздухе он не окисляется заметно. С кислородом соединяется непосредственно (сгорает) лишь при очень высокой t° с образованием окиси хрома СгзОз. Хром, содержащий углерод, окисляется труднее. При нагревании (плавлении) с <5огатыми кислородом веществами (нитратами, хлоратами) или при очень продолжительном плавлении со щелочами в присутствии кислорода X. окисляется до шестивалентного с образованием хроматов. При нагревании соединяется также непосредственное галоидами, серой, азотом, углеродом, кремнием, бором и др. Разбавленная серная и соляная к-ты действуют на X. в зависимости от его степени активности и от t° б. или м. энергично, ио азотная к-та и царская водка на него не действуют вследствие сильного пассивирования (см.). Обработанный азотной к-той X. трудно реагирует поэтому с серной и соляной к-тами. В активном состоянии нормальный потенциал X. (двувалентного иона Сг") равен 0,56 V т. о. в ряду напряжений X. располагается между цинком и желе- зом и может вытеснять многие металлы (напр. мед1., олово, свинец) из растворов их солей.  [c.309]

Соотношение между количествами углерода и хрома определяет структурные особенности двойной системы Ре — Сг. тле-род образует с хромом ряд весьма проч. ых карбидов и по этой причине уменьшает концентрацию хрома в твердом растворе. Известны три типа карбидов хрома кубический СггзСе, триго-нальный СГ7С3 и орторомбический СГ3С2. В области высокоуглеродистых сплавов существует еще один карбид СгС, но этот карбид при температурах ниже 1800 С не встречается, так как он  [c.210]

В обозначении марок легированных сталей принята такая система, при которой двузначные числа с левой стороны обозначают среднее содержание углерода в сотых долях процента. Буквы справа от этих цифр обозначают X — хром, Н — никель. Si — кремний, М — молибден, Ф — ванадий, В — вольфрам, Ю — алюминий. Цифры после букв обозначают процентное содержание соответствующего элемента. Например, марка 12ХНЗА означает, что сталь содержит углерода 0,12 /о, хрома —около 1 /о, никеля — около 3 /о (буква без цифр обозначает присадку до Р/о). Буква А , стоящая в конце обозначения марки, указывает на принадлежность стали к высококачественным материалам,  [c.149]

Железо-углерод, система — Диаграмма состояния 3 — 320, 360 Железоуглеродистые сплавы — см. Сплааы железоуглеродистые Железо-хром, система — Диаграмма состояния  [c.77]

Эти сплавы обладают высоким электросопротивлением, небольшим температурным коэфициентом электросопротивления и высокой жаростойкостью. Кроме никеля и хрома, в эти сплагы вводятся и другие элементы железо до 25—ЗООф (для замены никеля и облегчения механической обработки) молибден до 7<>/q (повышает удельное электросопротивление и жаростойкость), марганец до 4% (раскислитель, десульфуризатор и дегазификатор). Углерод вреден, так как он увеличивает хрупкость и уменьшает жаростойкость нихромов. Содержание его ограничивается по стандарту 0,25<>/о. Никель и хром обладают ограниченной растворимостью в твёрдом состоянии. При эвтектической температуре 1320° С в никеле растворяется 46% Сг и при комнатной температуре 35%. В тройной системе N1 — Сг — Fe в никелевом углу имеется обширная область тройного твёрдого раствора (фиг. 212).  [c.225]

В котельных сталях, являющихся многокомпонентными системами, легирующие элементы находятся в свободном состоянии, в форме интерметаллических соединений с железом илн между собой в виде оксидов, сульфидов и других неметаллических включений, в карбидной фазе, в виде раствора в цементите или самостоятельных соединений с углеродом. Молибден, хром, ванадий растворяются в основных фазах углеродистых сплавов - феррите, аустените, цементите или образуют специальные карбиды. При этом твердость и ударная вязкость феррита возрастают. В процессе эксплуатации происходит интенсивный переход молибдене и хрома из твердого раствора феррита в карбиды. Наибольшая интенсивность перехода молибдена наблюдается при наработках немногим более 2 10 ч. Далее процесс сглаживается. В исходном состоянии в малолегированных сталях содержится от 3 до 8 молибдена. После наработки около 1,5 10 ч его сод жание возрастает до 80%. Разброс значений содержания молибдена по отдельным трубам существенно увеличивается с наработкой времени. Соответственно происходит разупроч-ненне.  [c.154]

Легирующие элементы оказывают большое влияние на точку Л,, соответствующую температуре перехода перлита в аустенит (рис. 93, а). Никель и марганец снижают температуру А , а Т1, Мо, 31, У и другие элементы повышают температуру Л1 (см. рис, 93, а). Легирующие элементы уменьшают эвтектондную концентрацию углерода (рис. 93, б) к предельную растворимость углерода в аустените, сдвигая точки 5 к на диаграмме состояния Ре—С влево. Как видно из рис. 94, где приведены вертикальные разрезы тройной диаграммы состояния Ре—Мп—С и Ре—Сг—С, перитектическое, эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, как в двойных системах, а в некотором интервале температур. В системе р е—Мп.—С у-фаза с увеличением содержания марганца существует и в области более низких температур. В системе Ре—Сг—С с возрастанием концентрации хрома область существования у-ф>ззь( сужается. Состав карбидной фазы (К) в марганцовистых сталях соответствует соединению (РеМп)8С, в котором часть атомов железа. замещена атомами марганца. В хромистых сталях образуются (Ре, Сг)зС и специальные хромистые карбиды, состав и структура которых зависят от содержания углерода и хро.ма. При низком содержании углерода и высоком содержании хрома образуются ферритные стали, не претерпевающие полиморфного превращения (рис. 94, б).  [c.137]


Зависимость содержания углерода и кислорода в продуктах восстановления окиси хрома древесным углем от количества восстановителя в шихте исследовалось Кирсановым и др. [179] (рис. 68). Приведенные на рис. 68 кривые относятся к температуре 1670°К и остаточному давлению в системе (0,7—1,3) 10 . бар. В этих условиях при содержании углерода в металле 0,02—0,03% содержание кислорода составляет 0,8—1,0%. Дальнейшее уменьшение количества кислорода в металлическом хроме возможно лишь в случае резкого повышения содержания углерода.  [c.161]

Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]

В переходной зоне шлак существенно изменяет состав в результате довосстановления Si02 и уменьшения отношения М 0/А 20з в связи с испарением магния, восстанавливающегося в насыщенной кремнием системе и ошлакова-нием золы коксика, в которой имеется А гОз и отсутствует MgO. Одновременно в результате интенсивного восстановления кремния, разрушения карбидов железа и хрома и образования силицидов железа и хрома происходит рафинирование сплава от углерода с выделением Si . Верхняя зона получения высокоуглеродистого феррохрома поглощает 28,8 % от общего количества подводимой энергии.  [c.213]

В основу маркировки легированных сталей положена буквенно-цифровая система (ГОСТ 4543-71), Легирующие элементы обозначаются буквами русского алфавита марганец - Г, кремний - С, хром - X, никель - Н, вольфрам - В, ванадий - Ф, титан - Т, молибден - М, кобальт - К, алюминий - Ю, медь - Д, бор - Р, ниобий - Б, цирконий - Ц, азот - А. Количество углерода, как и при обозначениях углеродистых сталей, указывается в сотых долях процента цифрой, стоящей в начале обозначения количество легирующего элемента в процентах указывается цифрой, стоящей после соответствующего индекса. Отсутствие цифры после индекса элемента указывает на то, что его содержание менее 1,5 %. Высококачественные стали имеют в обозначении букву А, а особовы-сококачественые - букву Ш, проставляемую в конце. Например, сталь 12Х2Н4А содержит 0,12 % С, около 2 % Сг, около  [c.19]

Хром. Он находит очень широкое применение в наплавочных сплавах. Следует отметить, что сплавы системы Fe- r практического значения как наплавочные не имеют из-за образования хрупкой а-фазы Fe r и относительно небольшого упрочнения. Наибольшее влияние хрома на эксплуатационные свойства износостойких сплавов проявляется при наличии углерода. Высокий уровень эксплуатационных свойств сплавов Fe- r- обусловлен количеством, размерами, морфологией и микротвердостью карбидов и металлической основы.  [c.157]

Стали и сплавы с высоким электросопротивлением (ГОСТ 10994—74) доЛжны сочетать высокое сопротивление (1,06... 1,47 мкОм-м, что болф чем в 10 раз выше, чем у низкоуглеродистой стали) и жаростойкость (1000,..1350° ). К технологическим свойствам таких сплавов предъяв шотся требования высокой пластичности, обеспечивающей хорошую Деформируемость на прутки, полосу, проволоку и ленты, в том числе Жа лых сечений, а к потребительским — малой величины температурного коэффициента линейного расширения. Для этих Сплавов используются системы Fe + Сг + А1, Ре + Ni + Сг и Ni -ь Ст. Их микроструктура представляет собой твердые растворы с высоким содержанием легирующего элемента. Чем больше в сплавах хрома и алюминия, тем выше их жаростойкость. Количество углерода в сплавах строго ограничивают (0,06...0,12%), так как появление карбидов снижает пластичность и сокращает срок эксплуатации изделий.  [c.182]

Легирующие элементы, расположенные в периодической системе левее железа, образуют в стали карбиды более стойкие, чем карбид железа — цементит. При легировании стали карбн-дообразующими элементами в ее структуре образуются включения карбидов. Легирующие карбидообразующие элементы могут образовывать самостоятельные карбиды или - замещать железо в карбиде железа — цементите. При избытке карбидообразующих элементов по отношению к углероду эти элементы входят в твердый раствор. В качестве карбидообразующих элементов часто применяют хром, вольфрам, ванадий, молибден, титан, ниобий. Карбидные включения упрочняют сталь и повышают ер твердость.  [c.161]

Растворно-осадительный механизм роста, приводящий к необратимому увеличению объема вследствие развития диффузионной пористости, изучен применительно к графи-тизированным сплавам железа, никеля и кобальта. С углеродом указанные металлы образуют растворы внедрения и сильно различаются от него коэффициентами диффузии. Большое различие в диффузионной подвижности имеет место и в сплавах других металлов и неметаллов. Но при гермоциклировании этих сплавов, когда многократно повторяются процессы растворения и выделения избыточных фаз, накопление пор не обнаруживается. Число изученных систем невелико, но по крайней мере в микроструктуре термоциклиронанных твердых растворов на основе хрома и никеля, меди и титана, алюминия и меди, алюминия и кремния и некоторых других поры не выявлены. В указанных системах. компоненты образуют растворы замещения ч в них реализуется вакансионный механизм диффузии.  [c.98]

Но и в системах компонентов, образующих растворы внедрения, развитие пористости при термоциклировании наблюдали не всегда. В тех же сплавах Fe — С, в которых углерод связан в промежуточную фазу Feg , многократные нагревы не приводили к заметному увеличению объема, как это имело место в графитизированных сплавах. Введение в эти сплавы третьего компонента (кремния, марганца, хрома) не сказывается на склонности сплава к порообразованию, если графит в них не образуется. Различие объемов образующихся и исходных фаз велико, коэффициенты диффузии углеродных и металлических атомов сильно отличаются, однако в результате термоциклирования объем сплавов существенно не меняется.  [c.99]

Автор кратко рассмотрел влияние на свойства жаропрочных сталей и сплавов осгшвных легирующих элементов — никеля и хрома, а также наиболее энергичных аустенитизаторов — азота, бора, углерода. Марганец, как уже отмечалось, в качестве аусте-нитизатора действует примерно вдвое слабее никеля. Поэтому при введении больших количеств марганца в состав жаропрочных сталей рекомендуется одновременно повышать содержание в них углерода или азота. По нашим данным весьма полезен в данном случае и бор. Сам по себе марганец, естественно, не повышает жаропрочности аустенитных сталей. Для максимального упрочнения твердого раствора Fe—Сг—Мп его легируют молибденом, вольфрамом, ниобием, ванадием, титаном [371 в присутствии углерода с азотом. В высокожаропрочных сплавах на никелевой основе содержание марганца обычно сильно ограничивают, например до 0,3—0,5%. Возможно, это связано с относительной легкоплавкостью (см. рис. 78, в) и малой жаропрочностью сплавов системы Ni—Мп. Правда, в последнее время в состав никелевых сплавов типа инконель вводят до 10% Мп [42].  [c.45]

Бор довольно сильно окисляется в условиях дуговой сварки. Так, при сварке открытой дугой проволоками с малыми добавками бора он окисляется почти полностью. Обладая большим сродством к кислороду (см. рис. 15), бор может участвовать в развитии не только кремне- и марганцевовосстановительных процессов, но и восстанавливать титан из шлака, содержащего кислородные соединения титана. Разумеется, речь идет о довольно больших концентрациях бора в сварочной ванне, измеряемых десятыми долями процента. В иных условиях, при наличии в составе флюса довольно больших количеств окислов бора (например, 20%) возможно восстановление бора не только титаном и алюминием, но и хромом, углеродом, кремнием и марганцем. В табл. 19 приведены данные о переходе бора в металл шва из бористого фторидного флюса системы СаРа—В2О3 (АНФ-22). При отсутствии бора в сварочной проволоке и основном металле конечное содержание его в металле шва может достигнуть 0,2—0,3%, а при наличии в шве титана — даже 0,5—0,6%. Это обстоятельство несомненно расширяет возможности сварки под флюсом применительно к жаропрочным сталям и сплавам. Здесь имеется в виду не само по себе легирование металла шва бором через флюс, а возможность предотвращения угара бора при использовании проволоки или стали, легированной бором, в сочетании с бористым плавленым флюсом. 76  [c.76]



Смотреть страницы где упоминается термин Система хром — углерод : [c.62]    [c.362]    [c.486]    [c.210]    [c.369]    [c.294]    [c.65]    [c.198]    [c.200]    [c.253]    [c.28]   
Металловедение и термическая обработка (1956) -- [ c.351 ]



ПОИСК



Система железо — углерод — хром — вольфра

Система железо—хром—углерод

Углерод

Углерод— углерод

Хром — углерод

Хрома

Хромали

Хромиты



© 2025 Mash-xxl.info Реклама на сайте