Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система железо — молибден

Свешников В., Алферов Н., Исследование системы железо — углерод —молибден, Теория и практика металлургии Яч 4, 1936.  [c.343]

Рис. 72. Модель тройной системы железо — вольфрам — молибден Рис. 72. Модель <a href="/info/93432">тройной системы</a> железо — вольфрам — молибден

Рис. 102. Вертикальный разрез при 2 , молибдена тройной системы железо — цементит — молибден Рис. 102. <a href="/info/1152">Вертикальный разрез</a> при 2 , молибдена <a href="/info/93432">тройной системы</a> железо — цементит — молибден
Система железо—молибден (рис. 277)  [c.345]

Диаграммы состояния типа железо — цементит (с эвтектикой и эвтектоидом) системы циркония с серебром, бериллием, кобальтом, хромом, медью, железом, марганцем, молибденом, никелем, ванадием, вольфрамом, водородом.  [c.443]

В тех случаях, когда в двойной системе образуются интерметаллические фазы, при взаимной диффузии этих компонентов образуется, по крайней мере, одно интерметаллическое соединение, устойчивое при температуре диффузии. Образование интерметаллической фазы характеризуется наличием скачка на концентрационной кривой диффундирующего элемента. Этот скачок был обнаружен, например, при цементации железа вольфрамом, молибденом, кремнием и бериллием [224], [225], [240]. Скачок обнаруживается не только при образовании химического соединения, но и при фазовых превращениях.  [c.225]

Диаграмма состояния системы железо — молибден построена на основании термически , микроскопических и частично рентгенографических исследований. На рис. 30  [c.321]

Рис. 30. Диаграмма состояния системы железо — молибден Рис. 30. <a href="/info/166501">Диаграмма состояния системы</a> железо — молибден
Кроме фазовых объемов, наглядно видных на рис, 72, тройная система железо — молибден — вольфрам имеет следующие трехфазные объемы, которые на первый взгляд кажутся отсутствующими  [c.343]

Хром применяется в жаростойких сплавах в количестве 2—35 /о- Из диаграммы состояния системы железо — хром ясно, что мартенситные стали содержат 2—14 /о Сг, а ферритные 14—35 /о Сг. Однако эти границы могут сдвигаться из-за присутствия других элементов. Например, элементы, способствую-ш,ие устойчивости аустенита (углерод, азот, марганец и никель), расширяют область мартенситных сталей в сторону большего содержания хрома, в то время как кремний, вольфрам, молибден, титан, ниобий и алюминий сужают ее, снижая верхний предел содержания хрома.  [c.669]


Рассмотрим, например, тройные системы железо—углерод— хром и железо—углерод—молибден.  [c.73]

Еще в 1921 г. при исследовании системы сплавов Fe—Ni—Со было обнаружено, что многие из этих сплавов отличаются постоянной проницаемостью при малых индукциях, указанное свойство всегда связано с низкими потерями на гистерезис. Классический перминвар содержит 25% Со, 45% Ni, остальное — железо, однако его состав может изменяться в широких пределах. Иногда для увеличения электросопротивления перминвар дополнительно легируют молибденом и хромом.  [c.164]

Повышение прочности молибдена объясняется поверхностным науглероживанием (молибден — более активный карбидообразователь, чем железо, так как расположен в периодической системе элементов левее железа имеет менее достроенную электронную с -оболочку [91, 92]), образованием карбидов молибдена и их выделением при охлаждении в дисперсном виде (дисперсионное твердение). Эти процессы, приводящие к упрочнению молибдена, и обусловливают изменение характера разрушения — оно происходит не по молибдену, а по сварному шву.  [c.99]

На основе описанных методик с помощью радиоактивных изотопов Мо , Fe , Ni , проведено исследование диффузии и электропереноса обоих компонентов в сплавах системы молибден — вольфрам (всего И сплавов), в сплавах железа, содержащих 2 и 4 ат.% никеля в широких интервалах температур.  [c.205]

ЛОВ — чистое железо, ниобий, тантал, молибден. Низкоуглеродистые, хромовые и хромоникелевые нержавеющие стали, никель и никелевые сплавы и сплавы на основе кобальта могут применяться в системах, работающих при температурах, не превышающих 400—500°С.  [c.90]

Железо-молибден, система — Диаграмма состояния 3 — 329 Железо-молибден-углерод, система — Изотермическое сечение 3 — 336 Железо-никель, система — Диаграмма состояния 3 — 328 Железо-титан-углерод, система — Изотермическое сечение 3 — 336 Железо-углерод-легирующий элемент, система  [c.77]

Он начинает реагировать со льдом уже при температуре минус 98° С, а с водой протекает настолько бурная реакция, что при условии протекания ее а большой поверхности она может вызвать взрыв. Поэтому при загрузке жидкого натрия в установку система должна быть сухой. Натрий ие взаимодействует с алюминием, бериллием. бором, ниобием, железом, молибденом, никелем, танталом, вольфрамом и ураном. Взаимодействие натрия с другими металлами иллюстрируется табл. 2-3 [Л. 9].  [c.50]

В дальнейшем исследовали множество двойных и тройных систем, пытаясь уточнить значения Ny для отдельных элементов [18-20]. Наибольшее внимание уделили марганцу, железу, ванадию и молибдену, поскольку результаты для них оказывались наиболее неоднозначными. Так, согласно исследованиям тройной системы V—Ni—Со, ванадию можно было приписать значение N =5,66, что соответствует его положению в периодической таблице. Однако в сочетании с другими электроположительными элементами для V получали N =4,88 и склонялись к выводу, что величина для этого элемента безусловно зависит от химического состава сплава.  [c.292]

В этой фазе могут растворяться в значительных коли чествах различные легирующие элементы На рис 35 представлен разрез тройной системы никеля и алюминия с другими элементами, показывающий степень возможно го замещения и участия элементов в образовании 7 -фазы Кобальт замещает никель, титан, ниобий, ванадий, тан тал — алюминий, а молибден, хром и железо, по видимо му, могут замещать как позиции никеля, так и алюминия, что отражается на положении соответствующих фазовых областей  [c.71]

Как указывалось выше, соединения типа AzB с г ц к решеткой, которые называются у фазами, обеспечивают основное упрочнение сплавов с высоким содержанием никеля На схематическом изотермическом разрезе тройной системы никеля и алюминия с другими элементами (см рис 35) показана степень возможного замещения и участия различных легирующих элементов в образовании у фа зы Кобальт замещает никель, образуя горизонтальную об ласть, титан, ниобий, ванадий замещают в основном позиции алюминия, молибден, железо и хром, по видимому, могут замещать как атомы алюминия, так и никеля  [c.326]

Припой состава Си — (4ч-5)% Ge — (2-нЗ)% Si успешно применен для пайки меди с молибденом, никелем, железом, коваром и образует прочные и вакуум-плотные паяные швы. Припой применяется в виде фольги и проволоки. Припои системы Си— Ni—В, содержащ,ие 97% Си, не испаряются в пустотах, но соединения из стали, паянные такими припоями, более склонны к окислению и химической эрозии, чем припои с палладием. Зазоры при пайке высоколегированных сталей такими припоями должны находиться в пределах 0,05—0,2 мм.  [c.133]


Моисеев П. С. Коррозионная стойкость сплавов тройной системы железо — -хром — молибден в соляной кислоте. Труды НИИХИММАШ. Вып. 17. Конструкционные шеметаллические материалы и коррозия металлов . М., Машгиз,, 1954.  [c.349]

В сплавах системы железо — углерод — молибден, богатых железом, обнаружены следующие твердые фазы твердые растворы Мо и С в а- и у-железе (а- и у-фазы),. цементит, в котором растворено не более 1—2% Мо (С-фаза), карбиды молибдена МоС и МогС (0-фаза) и три двойных карбида МгзСб (наиболее вероятная формула  [c.531]

Система железо—углерод—молибден (см. рис. 89) несколько отличается от предыдущей системы. Кроме двойной системы железо—углерод, она включает системы железо—молибден и молибден—углерод. Особенностью диаграммы железо—молибден является наличие интерметаллических соединений 8 — 53,39% Мо (по массе) — состава МоаРвд и а-фазы, которая устойчива при высокой температуре. Как и в случае диаграммы железо—хром, у-область ограничена петлей растворимости. Максимальная рас-  [c.74]

В зоне прилива и на малых глубинах поверхность никелевых сплавов подвергается биологическому обрастанию, например усоногими раками и моллюсками. Это затрудняет поддержание пассивности никеля и сплавов нпкель — медь, никель — хром — железо и никель — хром. Однако сплавы системы нпкель — хром — молибден сохраняют пассивность в зоне прилива и при обрастании.  [c.79]

Система железо—молибден (фиг. 19) Молибден имеет кубическую объёмноцентрированную решётку с параметром а=3,14А. Значительно больший параметр решётки у мо-  [c.329]

Это главным образом элементы VIII группы, у которых быстро заполняется (лс ) -электронная. цодоболочка. Поскольку атомы этих элементов близки к модели твердых шаров, мы можем дать вероятное объяснение того, как они способствуют образованию плотноупакованной структуры у-ж леза. Равновесные диаграммы состояния с замкнутой у-областью характеризуют фазовое равновесие в системах железа с ванадием, ниобием, танталом, хромом, молибденом и вольфрамом. Эти элементы имеют кубическую объемноцентрированную структуру, которая весьма стабильна и характеризуется высокой температурой плавления. Это, естественно, наводить на мысль о том, что электронное строение атомов этих элементов благоприятствует образованию кубической объемноцентрированной структуры также и в сплавах с железом. Это довольно наглядный пример, однако для полного объяснения наблюдаемого в сплавах на основе железа вида диаграмм состояния его совершенно недостаточно, поскольку равновесные диаграммы состояния с у-областью петлеобразного типа наблюдаются также в системах железо—алюминий и железо—кремний несмотря на то, что алюминий имеет структуру гранецентрированного куба, а кремний— структуру алмаза.  [c.188]

Таким образом, в системе железо—молибден—углерод имеются а-фаза, у-фаза, интерметаллические фазы о и в, гексагональные карбиды Мо С и МоС, орторомбический цементит РвзС и два тройных кубических карбида типа (Мо, Ре)0С.  [c.74]

Грубе изучал также химическую стойкость поверхностей, образующихся в результате диффузии в следующих системах железо—хром, никель—хром, железо—алюминий, железо—молибден и железо—вольфрам. Основной металл (железо) в виде цилиндрической палочки помещался в асбестовую трубку, заполненную тонким металлическим порошком друп го металла. Нагрев проводился в атмосфере чистого водорода.  [c.204]

Эти сплавы обладают высоким электросопротивлением, небольшим температурным коэфициентом электросопротивления и высокой жаростойкостью. Кроме никеля и хрома, в эти сплагы вводятся и другие элементы железо до 25—ЗООф (для замены никеля и облегчения механической обработки) молибден до 7<>/q (повышает удельное электросопротивление и жаростойкость), марганец до 4% (раскислитель, десульфуризатор и дегазификатор). Углерод вреден, так как он увеличивает хрупкость и уменьшает жаростойкость нихромов. Содержание его ограничивается по стандарту 0,25<>/о. Никель и хром обладают ограниченной растворимостью в твёрдом состоянии. При эвтектической температуре 1320° С в никеле растворяется 46% Сг и при комнатной температуре 35%. В тройной системе N1 — Сг — Fe в никелевом углу имеется обширная область тройного твёрдого раствора (фиг. 212).  [c.225]

В котельных сталях, являющихся многокомпонентными системами, легирующие элементы находятся в свободном состоянии, в форме интерметаллических соединений с железом илн между собой в виде оксидов, сульфидов и других неметаллических включений, в карбидной фазе, в виде раствора в цементите или самостоятельных соединений с углеродом. Молибден, хром, ванадий растворяются в основных фазах углеродистых сплавов - феррите, аустените, цементите или образуют специальные карбиды. При этом твердость и ударная вязкость феррита возрастают. В процессе эксплуатации происходит интенсивный переход молибдене и хрома из твердого раствора феррита в карбиды. Наибольшая интенсивность перехода молибдена наблюдается при наработках немногим более 2 10 ч. Далее процесс сглаживается. В исходном состоянии в малолегированных сталях содержится от 3 до 8 молибдена. После наработки около 1,5 10 ч его сод жание возрастает до 80%. Разброс значений содержания молибдена по отдельным трубам существенно увеличивается с наработкой времени. Соответственно происходит разупроч-ненне.  [c.154]

Особое распространение в современной технике получили металлы середин больших периодов системы Д. И. Менделеева титан, цирконий, ванадий, ниобий, тантал, хром, молибден, вольфрам, рений, не говоря уже о металлах VIII группы железе, кобальте и никеле, значение в технике которых непрерывно возрастает. Сейчас используются и платиновые металлы иридий, родий, палладий и платина (Ки и Оз пока еще применяются мало).  [c.10]


Описаны сплавы кремния с сурьмой, висмутом, кобальтом, эологгом, свннцом, серебром, оловом и цинком [461. В двойных системах кремния с указанными металлами не обнаружено никаких соединений. Получены также сплавы с алюминием (47, 71. Сплавы на основе железа можно покрывать кремнием или сплавлять с ним [59]. Отливки из сплавов железа с высоким содержанием кремния (15 )о) стойки против коррозии, однако они не поддаются обработке резанием. Эти и другие сплавы кремнии и железа, а также кремния, углерода и железа подробно изучались Грейнером и сотр. [331. Те же авторы рассматривают кремнистые и кремнсмаргание-вые стали, в том числе стали, которые содержат также никель, молибден, хром и ванадий.  [c.338]

Как уже указывалось в разделе 5.4.3, аморфные металлические материалы с нулевой магнитострикцией характеризуются высокой магнитной проницаемостью и низкой коэрцитивной силой. Впервые близкая к нулю магнитострикция наблюдалась на аморфных сплавах в системах (Со —Fe)(Si — В) и (Со —Fe)(P —В) при содержании железа 5% (см. рис. 5.20). Затем нулевая магнитострикция была обнаружена и в сплавах, легированных никелем [104], что отмечено на рис. 5.42. Кроме того, магнитострикция приближается к нулю при замене железа на марганец [105, 106]. Недавно нулевая магнитострикция обнаружена в аморфных сплавах на кобальтовой основе с цирконием в качестве аморфизирую-щего элемента [107]. Эти сплавы ведут себя аналогично сплавам кобальта с металлоидами. Если в сплавы с цирконием вместо железа и (или) марганца ввести молибден или хром, то свойства сплавов резко меняются. При такой замене компонентов у сплавов кобальта с металлоидами магнитострикция отрицательна, а у сплавов с цирконием она оказывается положительной. Другие аморфные сплавы на основе кобальта, например Со — Та [108] и Со — Nb [109], также имеют отрицательную магнитострикцию, поэтому, добавляя туда железо, можно получить сплавы, имеющие нулевую магнитострикцию, что действительно наблюдается, например, в сплавах Со — Fe — Nb [ПО].  [c.161]

Легирующие элементы, расположенные в периодической системе левее железа, образуют в стали карбиды более стойкие, чем карбид железа — цементит. При легировании стали карбн-дообразующими элементами в ее структуре образуются включения карбидов. Легирующие карбидообразующие элементы могут образовывать самостоятельные карбиды или - замещать железо в карбиде железа — цементите. При избытке карбидообразующих элементов по отношению к углероду эти элементы входят в твердый раствор. В качестве карбидообразующих элементов часто применяют хром, вольфрам, ванадий, молибден, титан, ниобий. Карбидные включения упрочняют сталь и повышают ер твердость.  [c.161]

Идентификация интерметаллическнх соединений выделяющихся из аустенита жаропрочных никелевых сплавов, показала что это а фазы, фазы Лавеса (г фазы и др Они являются промежуточными фазами в многокомпонентных системах и их можно считать своеобразными эле ктроиными соединениями, так как в основном их структура определяет ся электронной концентрацией т е отношением е/о В этих фазах од ни элементы проявляют электроположительные свойства (например, хром молибден вольфрам) а другие — электроотрицательные (никель кобальт железо) типичный состав а фаз можно представить так (Сг, Mo)x(Ni o)j,  [c.326]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]


Смотреть страницы где упоминается термин Система железо — молибден : [c.532]    [c.28]    [c.467]    [c.467]    [c.321]    [c.254]    [c.325]    [c.369]    [c.555]    [c.286]    [c.84]    [c.8]   
Металловедение и термическая обработка (1956) -- [ c.321 ]



ПОИСК



ЖЕЛЕЗО-МОЛИБДЕН

Железо-молибден, система - Диаграмма состояния

Железо-молибден-углерод, система - Изотермическое сечение

Молибден

Молибденит

Система железо — бор

Система железо — молибден — вольфрам

Система железо — молибден — вольфрам — углерод

Система железо — цементит — молибден



© 2025 Mash-xxl.info Реклама на сайте