Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аморфные сплавы свойства магнитные

Магнитные свойства. Наибольший интерес представляют магнитные свойства аморфных сплавов переходных (Мп, Fe, Со, Ni,. ..) и редкоземельных (Ей, Gd и т. д.) металлов с другими металлами и металлоидами. При достаточно высоких температурах эти сплавы находятся в парамагнитном состоянии. Температурные зависимости магнитной восприимчивости хорошо описываются законом Кюри — Вейсса. При понижении температуры ниже 9 в них возникает магнитное упорядочение. Магнитное упорядочение аморфных сплавов может быть ферромагнитным, антиферромагнитным, а также ферримагнитным. В ряде случаев наблюдается состояние спинового стекла. Спиновое стекло характеризуется замораживанием спиновых магнитных моментов в случайных направлениях при температуре ниже некоторой характеристической. Заметим, что состояние спинового стекла обнаружено также и в некоторых кристаллах.  [c.374]


Наибольший практический интерес вызывают в настоящее время аморфные сплавы на основе переходных металлов группы железа. Они относятся к классу магнитомягких материалов и отличаются высокой магнитной проницаемостью и низкой коэрцитивной силой. Значения коэрцитивной силы этих сплавов зависят от химического состава сплавов. По сравнению с поликристалличе-скими магнитомягкими материалами аморфные сплавы обладают рядом преимуществ более низкими потерями по сравнению с трансформаторной сталью, повышенной прочностью, более низкой чувствительностью магнитных свойств к деформациям. Важным преимуществом является более низкая стоимость производства. Все это открывает широкие перспективы использования аморфных магнитных сплавов.  [c.375]

Таблица 27.29. Статические магнитные свойства некоторых аморфных сплавов [82] Таблица 27.29. Статические <a href="/info/57317">магнитные свойства</a> некоторых аморфных сплавов [82]
Аморфное состояние металлов метастабильно. При нагреве, когда подвижность атомов возрастает, протекает процесс кристаллизации, что постепенно приводит металл (сплав) через ряд мета-стабильных в стабильное кристаллическое состояние. Механические, магнитные, электрические и другие структурно-чувствительные свойства аморфных сплавов значительно отличаются от свойств кристаллических сплавов. Характерной особенностью аморфных сплавов являются высокий предел упругости и предел текучести при почти полном отсутствии деформационного упрочнения.  [c.372]

В заключение отметим, что к настоящему времени в общих чертах уже созданы основы физических представлений о тех факторах, при помощи которых можно оптимизировать и регулировать в нужном направлении магнитные свойства аморфных сплавов. Однако каждый новый аморфный сплав того или иного типа и даже сплав известного состава, но полученный не в строго идентичных условиях может иметь свой норов , что требует всякий раз проводить тщательное исследование для создания правильной картины о его свойствах.  [c.18]

Следует подчеркнуть, что значение условий охлаждения в формировании структуры аморфных сплавов не всегда имеет определяющее значение в формировании некоторых их свойств, например магнитных, поскольку, во-первых, при оптимизирующем отжиге различия в свойствах, связанных с условиями охлаждения, во многом нивелируются и, во-вторых, как это наблюдается в сплавах с близкой к нулю магнитострикцией, условия охлаждения вообще сравнительно слабо сказываются на служебных параметрах даже свежезакаленных образцов (в этом случае вариации во внутренних напряжениях слабо проявляются из-за того, что Ха=0). Но по этой причине роль технологических факторов нисколько  [c.21]


Отмечая недостатки аморфных сплавов, авторы в первую очередь назвали два из них — низкую термическую стабильность и недостаточную временную стабильность. Первый из них связан с развитием процессов кристаллизации и расслоения, второй — с релаксацией атомной структуры аморфной фазы. Негативное влияние временной нестабильности в первую очередь сказывается на таких служебных свойствах, как магнитные. При этом временная нестабильность магнитных свойств во многом является отражением развития в аморфной фазе процессов композиционного направленного упорядочения, приводящих к стабилизации границ доменов. Повышение термической и временной стабильности свойств технически важных аморфных сплавов — одна из важнейших задач, стоящих перед исследователями аморфных сплавов.  [c.22]

В первых разделах этой главы в общих чертах описываются основные магнитные свойства аморфных металлических материалов. Далее упор будет сделан на аморфных ферромагнитных материалах, обладающих одним важным отличительным свойством — высокой магнитной проницаемостью, т. е. на магнитномягких аморфных сплавах. Поскольку существенную роль здесь играют процессы намагничивания, особое внимание будет уделено рассмотрению доменной структуры аморфных металлов, явлениям магнитострикции и магнитной анизотропии. Наконец, будет дан краткий анализ магнитных свойств с точки зрения практического использования аморфных металлических материалов.  [c.121]

Аналогично ведут себя ленты из аморфных сплавов других химических составов. Можно считать, что релаксация напряжений при термической обработке является эффективным средством улучшения магнитных свойств. Однако при превышении температуры термической обработки выше определенного значения наблюдается сильный рост Яс (см, рис, 5.28). Это резкое повышение Не происходит вблизи температуры кристаллизации аморфного сплава, по-  [c.148]

Это не совсем точно. Параметр r jra в первую очередь отражает степень релаксации напряжений, создаваемых при свивке ленты в кольцо радиусом Ts. Только в том случае, если принять, что релаксация этих напряжений и напряжений, возникающих при закалке из жидкости, протекает одинаково, заключение автора будет обоснованным. В этой связи интерес могут представлять работы [19, 50], где обсуждается связь между релаксацией напряжений и изменением магнитных свойств аморфных сплавов разного состава. Прим. ред.  [c.148]

О магнитных свойствах аморфных сплавов на основе железа, кобальта и никеля в настоящее время известно следующее  [c.160]

Как уже указывалось, явление магнитострикции имеет место и в том случае, когда ферромагнетик находится в аморфном состоя-иии. Для магнитномягких материалов важно было рассмотреть условия создания нулевой магнитострикции. Однако наличие большой магнитострикции можно использовать и как функциональное свойство с крайне интересной практической реализацией . Особенно интересной является возможность появления в аморфных сплавах большой магнитострикции в слабых магнитных полях. Впервые на  [c.174]

При термической обработке аморфных сплавов на стадии, предшествующей кристаллизации, наблюдаются изменения физических свойств. Об этом уже подробно говорилось в разделе 4.2. Например, хорошо известны соответствующие изменения магнитных свойств и пластичности. При термической обработке с кристаллизацией аморфные металлы практически утрачивают свои отличительные свойства. Это обстоятельство необходимо учитывать при выборе температурных и временных режимов термической обработки с тем, чтобы сохранить присущие аморфным металлам специфические качества.  [c.295]

В последнее время начались разработки.аморфных материалов для фильтров, предназначенных для очистки различных растворов. В основе этих разработок лежат такие свойства аморфных сплавов, как высокая коррозионная стойкость и высокая магнитная индукция насыщения. Изучаются возможности применения аморфных материалов в мощных магнитных полях, где эффективность фильт-  [c.302]


На магнитные свойства металлических стекол благоприятно влияет отсутствие кристаллографической анизотропии и протяженных дефектов. Кроме того, в аморфных сплавах в большей степени, чем в сплавах с кристаллическим строением, проявляются эффекты магнитного последействия, что связано со стабилизацией границ доменов вследствие композиционного направленного упорядочения. Для магнитного последействия характерна обратимость магнитных свойств по отношению к магнитному и термическому воздействиям.  [c.237]

Особая область применения аморфных сплавов на основе железа с добавками кобальта — это элементы магнитно-механических систем, поскольку они обладают высокой магнитострикцией, особыми упругими свойствами и высокой чувствительностью магнитных свойств к приложенным нагрузкам. Они используются для магнитострикционных вибраторов, линий задержки, механических фильтров, упругих датчиков. Сплавы с низкой температурой Кюри применяют как датчики температуры.  [c.556]

Применение железоникелевых аморфных сплавов обусловлено их повышенными динамическими магнитными свойствами при частотах выше 100 кГц и хорошими статическими гистерезисными свойствами, сравнимыми со свойствами пермаллоев. Они, в частности, находят применение в сердечниках малогабаритных трансформаторов, магнитных усилителях, реле, высокочастотных регуляторах, магнитных фильтрах, магнитных экранах, малочувствительных к деформациям и вибрациям. Такие экраны могут представлять собою ткани, сплетенные из узких (шириной 1...2ММ) аморфных лент. Для гибких магнитных экранов представляют интерес также сплавы на основе кобальта.  [c.557]

Следствием такой аморфной структуры являются необычные магнитные, механические, электрические свойства и коррозионная стойкость аморфных металлических сплавов. Наряду с высокой магнитной мягкостью — такой, что уровень электромагнитных потерь в аморфных сплавах с высокой магнитной индукцией оказывается суще-  [c.859]

В работе [160] на основе изучения тонких пленок сплава Ni— Fe показано, что мягкие магнитные свойства улучшаются при уменьшении эффективной магнитокристаллической анизотропии. Этого можно достичь, если увеличить число зерен, участвующих в обменном взаимодействии в тонких магнитных пленках. Иначе говоря, уменьшение размера приводит к росту обменного взаимодействия, ослаблению магнитокристаллической анизотропии и тем самым к улучшению мягких магнитных свойств. Позднее эта идея была реализована экспериментально путем нГ правленной кристаллизации многокомпонентных аморфны сплавов. Мягкими магнитными материалами являются 81-соде1 жащие стали, поэтому первоначальные попытки улучшения мягких магнитных свойств путем кристаллизации аморфных сплавов были предприняты на сплавах системы Fe—Si—В с добавками меди. Однако получить сплавы с нанокристаллической  [c.54]

Особые свойства аморфных сплавов как магнитно-мягких материалов обусловлены механизмом диссипации энергии при подведении внешней энергии. В силу своего структурного состояния они не способны дис-сипировать энергию путем пластической деформации, и поэтому их можно деформировать упруго в достаточно широком интервале напряжений без ухудшения магнитных свойств (пластическая деформация ухудшает магнитные свойства материала). Этим в значительной мере обусловлена достаточно широкая область применения аморфных сплавов как ма-терилов с особыми магнитными свойствами. Кроме того, в аморфных сплавах в большей степени, чем в сплавах с кристаллическим строением проявляются эффекты магнитного последействия [493]. Это связано со стабилизацией границ доменов вследствие композиционного направленного упорядочения. Для магнитного последствия характерны обратимость магнитных свойств по отношению к магнитному и термическому воздействиям. Стабилизация границ доменов (магнитного последействия) влияет на гистерезисные свойства аморфных сплавов, что является важным способом улучшения комплекса гистерезисных магнитных свойств аморфных материалов. Улучшенным комплексом магнитных свойств обладают и мелкокристаллические сплавы с размером зерна менее 10-50 мкм.  [c.302]

Магнитные материалы. На рис. 3.19 — 3.21 приведены данные, иллюстрирующие влияние размера кристаллитов на магнитные свойства материалов различных типов. В последние годы благодаря изучению свойств наноматериалов, полученных контролируемой кристаллизацией из аморфного состояния, японскими учеными был открыт новый класс магнитомягких материалов с высоким уровнем статических и динамических магнитных свойств по сравнению с аналогичными по назначению кристаллическими и аморфными сплавами. Это сплавы на основе Ре —81 —В с небольшими добавками N6, Си, 2г и некоторых других переходных металлов (например, Р1пете1 в Германии сплавы этого типа называются Витроперм ). После закалки из расплава эти сплавы аморфны, а оптимальные параметры достигаются после частичной кристаллизации при температуре 530 —550 °С, когда выделяется упорядоченная нанокристаллическая фаза Ре —81 (18 — 20) % с размером частиц около 10 нм. Объемная доля наночастиц в аморфной матрице составляет 60 — 80 %. Сплавы обладают низкой коэрцитивной силой (5— 10 А/м) и высокой начальной магнитной проницаемостью при обычных и высоких частотах при малых потерях (200 кВт/м ) на перемагничивание, что обеспечивает их широкое применение в электротехнике и электронике в качестве трансформаторных сердечников, магнитных усилителей и импульсных источников питания, а также в технике магнитной записи и воспроизведения и т.д., обеспечивая значительную миниатюризацию этих устройств и стабильную работу в широком диапазоне частот и температур. Мировой выпуск сплавов оценивается на уровне 1000 т в год [39].  [c.162]


Отметим также другие методы получения изделий из аморфных сплавов, которые ие нашли отражения в книге. Чтобы избежать операций штамповки (вырубки) при изготовлении деталей сложной формы (например, зубчатой — для статоров и роторов двигателей) применяют охлаждающий диск, состоящий из участков с высокой и низкой теплопроводностью (Либерманн, 1981 г.). Получаемая на таком диске лента резко неоднородна по хрупкости, что позволяет легко отделить пластичные аморфные участки заданной формы, пригодные для непосредственного использования в изделиях. Другой интересный способ — это получение изогнутых леит вместо прямых, чтобы избежать деформации при навивке магнитных лент в тороид, приводящей к деградации гистерезисных магнитных свойств. Заметного улучшения магнитных свойств в ряде случаев можно добиться с помощью закалки расплава в магнитном поле (сплавы с высокой  [c.11]

В гл. 4 подробно описаны превращения при кристаллизации и влияние на них химического состава. Отметим только, что изучение этих процессов пред- ставляет не только познавательный интерес, но имеет важное практическое значение. В первую очередь развитие этих процессов тесно связано с проблемой термической стабильности аморфных материалов. Кроме того, контролируемая частичная или полная кристаллизация обеспечивают формирование такой структуры, которая может быть полезной для практических целей (в частности, в первом случае удается повысить высокочастотные магнитные свойства, во втором — создать сверхпрочные микрокристаллические материалы). Здесь же рассматривается вопрос о диффузионной подвижности атомов в аморфных сплавах. Поскольку этот вопрос в книге обсуждеи кратко, рекомендую ознакомиться с обзором [14].  [c.17]

Самой большой по объему является гл. 5, целиком посвященная магнитномягким аморфным материалам. Это и не удивительно, поскольку, как отмечалось выше, магнитным свойствам до сих пор уделялось первостепенное значение, как свойствам, интерес к которым предопределил во многом исключительный научный интерес к аморфным сплавам и вызвал к жизни новую металлургическую технологию. Магнитножесткие аморфные материалы в книге только упоминаются, хотя интерес к иим, несомненно, будет возрастать. Информация по этому вопросу может быть получена из обзора [8].  [c.17]

Для улучшения токонесущих характеристик аморфных сплавов создают смешанную аморфно-кристаллнческую структуру, усиливающую пиииииг магнитного потока. И последнее, для аморфных сверхпроводников характерна высокая стойкость их сверхпроводящих и механических свойств по отношению к радиационным повреждениям. Более того, эти свойства могут даже улучшаться в результате облучения.  [c.20]

Полученные в ходе многих успешных экспериментов характеристики свойств аморфных металлов обусловили повышенный интерес к практическому применению этих материалов. Это видно по табл. 1.1, где сделана попытка проследить историю развития исследований аморфных металлов. В 1970 г. появилась основная технология получения непрерывных аморфных металлических лент методы центробежной закалки [2, 4] и закалки в валках (прокатки расплава) [5]. До этого удавалось получать лишь небольшие аморфные пластинки. Именно тогда, с появлением возможности изготовления лент, было установлено, что сплавы, хрупкие в кристаллическом состоянии, при аморфизации приобретают высокую пластичность и прочность [2, 6]. То, что до тех пор интересовало лишь экспериментаторов-одиночек, вдруг оказалось в центре всеобш,его внимания. После 1970 г. появились многочисленные разработки аморфных сплавов, были открыты многие другие их интересные свойства. Так, в 1974 г. были обнаружены свер хвысокая коррозионная стойкость [7] и высокая магнитная проницаемость [8, 9] аморфных сплавов. Сегодня эти новые материалы из мечты превратились в реальность.  [c.26]

Ранее предполагалось, что поскольку аморфные сплавы имеют изотропную и однородную в магнитном отношении структуру, они должны легко намагничиваться. Подтверждением этому может служить то, что коэрцитивная сила не превышает 8 А/м. Однако видно, что аморфные ферромагнетики, согласно 3 и 4, могут проявлять анизотропию при намагничивании, т. е. доменные стенки при своем перемеш,ении преодолевают потенциальный барьер. Это указывает на то, что аморфные металлические ленты не всегда находятся в идеально однородном магнитном состоянии. Магнитная анизотропия аморфных сплавов как следствие неоднородности их магнитного состояния, хотя полностью не разрушается при термообработке, но все же, за (Счет дротекания, процессов структурной релаксации значительно уменьшается, вследствие чего аморфные сплавы,становятся гораздо более магнитномягкими. Возможность улучшения магнитных свойств аморфных сплавов является сейчас стимулом для разработки новых химических составов, совершенствования способов изготовления и режимов термической обработки. При этом сам поиск оптимальных составов и режимов улучшения магнитных свойств способствует в конечном итоге лучшему пониманию физики процессов намагничивания аморфных ферромагнетиков.  [c.136]

Растяжение также является эффективным средством улучшения свойств магнитномягких аморфных материалов. Так как магнитоупругая энергия, например, у ленты с положительной магнитострик-цией, в направлении растяжения снижается, намагничивание в этом направлении осуществляется легко. Следовательно, при приложении растягивающей магрузки форма петли гистерезиса более приближена к прямоугольной. На рис. 5.40 показано изменение коэрцитивной силы и остаточной намагниченности при растяжении аморфного сплава на основе железа с магнитострикцией, равной (30- -40)10-8. Влияние растяжения на магнитные свойства кристаллических веществ известно давно. Для аморфных сплавов характерно то, что эффект растяжения может проявляться вплоть до довольно больших значений нагрузки. Связано зто с тем, что предел упругости аморфных лент в несколько раз больше предела упругости кристаллов [100], поэтому закрепление границ доменов.  [c.158]

Как уже указывалось в разделе 5.4.3, аморфные металлические материалы с нулевой магнитострикцией характеризуются высокой магнитной проницаемостью и низкой коэрцитивной силой. Впервые близкая к нулю магнитострикция наблюдалась на аморфных сплавах в системах (Со —Fe)(Si — В) и (Со —Fe)(P —В) при содержании железа 5% (см. рис. 5.20). Затем нулевая магнитострикция была обнаружена и в сплавах, легированных никелем [104], что отмечено на рис. 5.42. Кроме того, магнитострикция приближается к нулю при замене железа на марганец [105, 106]. Недавно нулевая магнитострикция обнаружена в аморфных сплавах на кобальтовой основе с цирконием в качестве аморфизирую-щего элемента [107]. Эти сплавы ведут себя аналогично сплавам кобальта с металлоидами. Если в сплавы с цирконием вместо железа и (или) марганца ввести молибден или хром, то свойства сплавов резко меняются. При такой замене компонентов у сплавов кобальта с металлоидами магнитострикция отрицательна, а у сплавов с цирконием она оказывается положительной. Другие аморфные сплавы на основе кобальта, например Со — Та [108] и Со — Nb [109], также имеют отрицательную магнитострикцию, поэтому, добавляя туда железо, можно получить сплавы, имеющие нулевую магнитострикцию, что действительно наблюдается, например, в сплавах Со — Fe — Nb [ПО].  [c.161]

Таблица 5.1. Магнитные свойства аморфных сплавов (закалка из жидкого состояния) с высокой магнитной проницаемостью н низкой магнитострикцней Таблица 5.1. Магнитные свойства аморфных сплавов (закалка из <a href="/info/230632">жидкого состояния</a>) с высокой <a href="/info/1587">магнитной проницаемостью</a> н низкой магнитострикцней

До сих пор мы обсуждали только те аморфные сплавы, которые могут быть использованы как магнитномягкие материалы. Однако, с точки зрения других функциональных магнитных свойств аморфные сплавы имеют, вероятно, также очень большие возможности, которые, правда, подробно пока не изучены. Упомянутое выше применение аморфных сплавов, полученных напылением, для производства лент магнитной записи указывает на одно из направлений практического использования особенностей этих материалов. Другими перспективными направлениями может служить использование быстрозакаленных аморфных лент в качестве магнитострикци-онных вибраторов и элементов в линиях задержки, а также в качестве инварных материалов, что и будет кратко рассмотрено ниже.  [c.174]

Одной из причин, по которой аморфные сплавы привлекают к себе внимание как промышленные материалы, являются их особые электронные свойства, резко отличающиеся от электронных свойств обычных кристаллических металлов. В настоящей главе в общих чертах рассматриваются энергетические состояния электронов аморфных металлов и сплавов в обычном (несверхпроводящем) состоянии и явления электронного переноса. Сверхпроводимость аморфных металлов в настоящее время является предметом интенсивных исследований с точки зрения как физической стороны явления, так и его практического применения, и поэтому выделена в отдельную главу. Магнитные. свойства амЮрфных леталлов, также обусловленные электронными процессами, уже подробно рассматривались в главе 5, как наиболее изученные свойства аморфных металлических материалов, поэтому здесь мы не будем к ним возвращаться.  [c.177]

Магнитно-мягкие металлические стекла изготавливают на основе Fe, Со, Ni с добавками 15...20% аморфообразующих элементов В, С, Si, Р. Например, Feg SijjSBjjjS j имеет высокое значение магнитной индукции (1,6...1,61 Тл) и низкое — коэрцитивной силы (32...35 мА/см). Аморфный сплав o Fe4(Mo, Si, В)з(, имеет сравнительно небольшое значение магнитной индукции (0,55 Тл), но высокие механические свойства (900... 1000 HV).  [c.237]

Использование аморфных сплавов в качестве магнитно-мягких материалов требует оптимизации их химического состава и структуры по следующим критериям температуре Кюри (она должна быть достаточно высокой и приближаться к температуре Кюри лучших кристаллических магнитно-1 ягких сплавов или превышать ее) магнитной проницаемости коэрцитивной силе индукции насыщения и удельного электросопротивления (для аморфных сплавов оно по крайней мере в 3 раза выше, чем для кристаллических). Этими свойствами можно управлять не только при изменении химического состава, но и путем отжига, в том числе в магнитном поле [492]. Например, сплав (Рео,97Мпо,оз)7б5114Вю имеет температуру Кюри на 150—200° выше, чем ферриты, а его эффективная магнитная проницаемость при частоте 20 кГ составляет 6-10 (для ферритов она равна 2-10 ).  [c.302]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]

Большая группа аморфных сплавов, отличающихся малой критической скоростью аморфизации, образуют особый вид стеклообразующих систем, так называемые металлические стекла. Как известно, эти материалы имеют отличные механические, магнитные и антикоррозионные свойства. Единственным серьезным недостатком этих материалов является их чрезвычайная хрупкость. Однако в переохлажденном жидком состоянии они ведут себя как сверхпластичные материалы. С этой точки зрения металлические стекла, характеризующиеся широким темпера-1УРНЫМ интервалом переохлажденного жидкого состояния, представляют несомненный интерес. Некоторые из таких материалов можно получать в виде объемных аморфных заготовок. В переохлажденном жидком состоянии они показывают очень низкую вязкость и отличную деформируемость, что можно использовать для штамповки изделий сложной формы (см. рис. 5.33). В этом смысле объемные аморфные заготовки можно вполне рассматривать в качестве нового типа конструкционных материалов [37].  [c.420]

В сплавах на железоникелевой основе роль никеля как легирующего элемента — в уменьшении магнитострикции по сравнению со сплавами на основе железа, а также в повышении чувствительности к термомагнитной обработке. При этом приходится мириться с уменьшением индукции насыщения. Наибольшее распространение получили сплавы с примерно равным содержанием железа и никеля (примером является состав Fe4oNi4QPj B ). Магнитные свойства железоникелевых сплавов являются промежуточными между свойствами сплавов на основе железа и на основе кобальта. Индукция насыщения таких сплавов составляет 0,7...1,0Тл, что выше, чем у типичных аморфных сплавов на основе кобальта. Они обладают низкими потерями на перемагничивание, высокой максимальной проницаемостью и очень низкой коэрцитивной силой. Наилучшее сочетание низких потерь и высокой максимальной проницаемости обеспечивает отжиг в продольном магнитном поле. Высокие значения начальной проницаемости, а также низкий уровень потерь на перемагничивание при высоких частотах, начиная с 10 кГц, получают с помощью отжига в поперечном магнитном поле или путем закалки от температур выше точки Кюри (для сплавов, в которых температура Кюри ниже температуры начала кристаллизации).  [c.556]


Смотреть страницы где упоминается термин Аморфные сплавы свойства магнитные : [c.109]    [c.290]    [c.291]    [c.373]    [c.11]    [c.16]    [c.18]    [c.105]    [c.134]    [c.160]    [c.222]    [c.293]    [c.558]    [c.560]   
Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.2 , c.158 , c.175 ]



ПОИСК



Аморфное юло

Исследование магнитных свойств аморфных сплавов

Магнитные сплавы—.см. Сплавы для

Сплав аморфные

Сплавы Магнитные свойства

Сплавы магнитные



© 2025 Mash-xxl.info Реклама на сайте