Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изгиб стержня за пределом упругости

Изгиб стержня за пределом упругости 206 поперечный 204 прямой плоский 192 с кручением 223 упругий 192 Изнашивание 260, 265 абразивное 266 коррозионно-механическое 267  [c.564]

На фиг. III. 54, а приведена картина полос интерференции для чистого изгиба гладкого алюминиевого стержня за пределом упругости. Оптически чувствительный слой толщиной 2,0 мм выполнен из материала ЭДб-М, имеющего при комнатной температуре = = 0,4-10 . Разность главных деформаций в крайних растянутых волокнах  [c.249]


Ф. С. Ясинскому принадлежат выдающиеся исследования по продольному изгибу. В Известиях собрания инженеров путей сообщения были опубликованы его замечательные работы Опыт развития теории продольного изгиба (1892 г.) и О сопротивлении продольному изгибу (1894 г.). Развивая теорию продольного изгиба, основы которой были положены Л. Эйлером, он обобщил экспериментальные исследования устойчивости прямых стержней за пределом упругости а также дал впервые теоретические решения важнейших для мостостроительной практики задач  [c.30]

Произведенные опыты показали что при достаточной длине трубки формула (261) дает вполне удовлетворительные результаты, если только сжимающие напряжения, соответствующие дкр. не превосходят предела упругости материала. В противном случае формула (261) будет давать, очевидно, преувеличенные значения для критических давлений. Мы можем расширить применение нашей формулы, если только условимся за пределами упругости вместо постоянной величины Е ставить некоторую переменную величину Е, которая может быть вычислена на основании предварительных опытов на сжатие за пределом упругости. При этом мы можем воспользоваться той формулой, которую применяют при исследовании продольного изгиба призматических стержней прямоугольного сечения, и положить  [c.464]

Используемые образцы представляют собой стержни прямоугольного, реже квадратного или круглого сечений. Длина образца обычно на 40—60 мм больше, чем расстояние между опорами, которое для уменьшения смятия образца под опорой задается равным (10- 20)/г, где /г—высота сечения или диаметр образца (обычно /г=10—30 мм). Ширина образца прямоугольного сечения должна быть меньше трех толщин, иначе за пределом упругости из-за стеснения деформации по ширине образца в нем создается двухосное напряженное состояние. Образцы из чугунных отливок, как и метод их испытания на изгиб в целом, регламентированы ГОСТом 2055—43.  [c.37]

Участок ВС соответствует продольному изгибу после перехода за предел текучести ). Значительная работа по исследованию продольного изгиба за пределом упругости прямолинейных стержней и колонн на  [c.426]

В о л ь м и р А. С., Продольный изгиб стержней постоянного и переменного сечения за пределами упругости, Научные записки Харьковского механико-машиностроительного института , т. 5, 1940.  [c.832]

В чем состоит особенность расчета стержней на изгиб за пределом упругости-  [c.89]


В заключение заметим, что методы теории упругости нужно применять к задачам о продольном изгибе стержня с некоторой осторожностью, потому что они дают хорошие результаты, если мы рассматриваем достаточно большие деформации только тогда, когда имеем дело с длинными и тонкими стержнями. Для стержней такого рода первая критическая сила имеет практическое значение, ибо ее величина близка к значению той нагрузки, при которой стержень переходит за предел пропорциональности. Мы рассмотрели задачу о стержне, которая является частным случаем ряда задач, связанных с устойчивостью упругих систем. Отличительной чертой этих задач является то, что, как показывает рис. 115, нагрузка и соответствующее ей перемещение не пропорциональны между собой.  [c.578]

Если стержень не скреплен с упругим основанием, то при действии силы Р мы будем иметь реактивные усилия основания, отличные от нуля лишь на протяжении я/2а в обе стороны от места приложения силы. Дальше прогиб становится отрицательным, и так как мы собственным весом стержня пренебрегаем, то работать на изгиб за пределами указанного выше участка он не будет.  [c.329]

Внецентренное сжатие стержней большой жесткости в пластической области. Так как при внецентренном сжатии, так же как и при чистом изгибе, нормальные напряжения, а следовательно, и соответствующие им деформации изменяются пропорционально расстояниям волокон от нейтральной плоскости, то пластические деформации впервые появляются в волокнах, наиболее удаленных от этой плоскости, в большинстве случаев — в сжатых. По мере роста деформаций пластическое состояние охватывает все большее и большее число волокон, так что в се-чении образуются целые зоны пластичности, охватывающие все большую и большую часть сечения. Граница между упругой и пластической зонами постепенно приближается к нейтральной оси, которая в свою очередь меняет свое положение. В зависимости от поведения материала при пластической деформации окончание этого процесса может иметь различный характер. Мы рассмотрим только случай, когда материал деформируется пластически без упрочнения и имеет одинаковые пределы текучести при растяжении и сжатии. В этом случае пластическая деформация, начавшаяся в сжатой зоне сечения, при определенной величине нагрузки распространяется и на растянутую зону, охватывая постепенно все большую и большую ее часть. Таким образом, за предельное состояние можно принять такое, при котором та и другая зоны сечения оказываются в со- стоянии пластической деформации, т. е. напряжения во всех точках равны соответствующему пределу текучести. Тогда на основании (7.1) получим  [c.257]

Значение касательно-модульной и приведенно-модульной нагрузок. Изучение изгиба сжатых стержней за пределом упругости в зависимости от величины сжимаюп1его усилия связано с решением трудной математической задачи. Качественные результаты Шенли получил, рассматривая идеализированную схему полужесткой колонны (состоящей из двух жестких стержней, соединенных упругопластическим шарниром, размеры которого пренебрежимо малы [ J). Исследовано также поведение и более реальных стержней.  [c.276]

В XIX в. Д. И. Журавский решает важнейшие вопросы расчёта балок на изгиб, определения усилий в фермах в связи с проектированием мостов, X. С. Головин даёт точное исследование напряжений в кривых брусьях, а А. В. Гадо-лин — в составных толстостенных трубах оригинальные исследования по устойчивости стержней за пределом упругости, в связи с влиянием эксцентриситета приложения нагрузки, упругости среды и другими факторами, осуществляются проф. Ф. С. Ясинским. Под руководством проф. Н. А. Белелюбского в Ленинграде и проф. В. Л. Кирпичева в Киеве создаются крупные лаборатории по исследованию прочности материалов.  [c.1]

Малый параметр может быть введен в теории пластичности различным образом. А. А. Ильюшин [58] использовал в качестве малого параметра величину, обратную модулю объемного сжатия, и исследовал нормальные и касательные напряжения при чистом изгибе балки за пределом упругости. Отметим, что вопросы, связанные с линеаризацией по коэффициенту Пуассона, рассмотрены ниже в Добавлении. Методом малого параметра, характеризующего геометрию тел, Л. М. Качанов [63, 64] рассмотрел кручение круглых стержней переменного диаметра и ползучесть овальных и разностенных труб. В работе [30] малый параметр характеризует различие между плоским деформированным и осесимметричным состояниями. Б. А. Друянов [13, 14] при помощи метода малого параметра учел неоднородность пластического материала. Здесь малый параметр характеризовал возмущение условия пластичности. Свойства пластического материала характеризует малый параметр в работах Л. А. Толоконникова и его сотрудников [76—78], а также в [83].  [c.9]


Однако явление продольного изгиба продолжает существовать и за пределом упругости. Опытным путем установлено, что действительные критические напряжения для стержней средней и малой гибкости (Я < Кред) ниже значений, определенных по формуле Эйлера. Таким образом, в этом случае формула Эйлера дает завышенные значения критической силы, т. е. всегда переоценивает действительную устойчивость стержня. Поэтому использование формулы Эйлера для стержней, теряющих устойчивость за пределом упругости, не только  [c.511]

В 1895 г. Энгессер [25.12] распространил критерий Эйлера на стержни, теряющие устойчивость за пределом упругости. Согласно этому критерию переход из исходного состояния в смежное совершается при постоянной нагрузке. В изогнутом состоянии стержня (рис. 25.1) напряжения на вогнутой стороне за счет изгиба возрастут, а на выпуклой—-уменьшатся, т. е. изгиб на  [c.301]

К изогнутому стержню можно применить те же соображения, которыми мы руководствовались при рассмотрении случая кручения вала. Здесь мы также исходим из предположения, что поперечные сечения стержня остаются плоскими и после деформации. Если предел пропорциональности не перейден, то плоская форма сечений будет сохраняться с достаточной точностью во всех случаях, когда влиянием касательных напряжений на деформацию можно пренебречь. Мы предположим, что это условие выполняется и при переходе за пределы упругости и пропорциональногти. Тогда, аналогично тому, как это мы делали со сдвигами у> удлинения е в волокнах, удаленных на достаточное расстояние от нулевой линии сечения, можно разложить на две части е + е, причем удлинения г связаны с напряжениями, получающимися в сечении при изгибе, законом Гука.  [c.294]

Если представить графически зависимость между силой Р и прогибом / верхнего конца стержня, то иол5 м кривую АВ, изображенную на рис. 41. Кривая эта начерчена в том предположении, что все явление происходит в пределах упругости. За пределами упругости продольный изгиб протекает иначе. Если бы, например, точка С соответствовала началу появления остающихся деформаций, то при дальнейшей нагрузке зависимость между Р и /  [c.265]

Ф. С. Ясинский одним из первых указал на необходимость экспериментального и теоретического исследования потери устойчивости за пределами упругости, введя понятие о двух модулях упругости и Модуль Е = onst характеризует жесткость материала в растянутой зоне стержня, выпучивщегося при продольном изгибе. Геометрический смысл модуля Е ясен из рис. 349 E=tga.  [c.365]

Первые решения задачи об устойчивости сжатого стержня за пределом пропорциональности (Энгессер, Ясинский, Карман) относятся к следующей постановке. Стержень нагружается центральной сжимающей силой, принимаются меры для того, чтобы не произошло выпучивания в процессе нагружения. Когда сила достигает значения Р, она удерживается постоянной и стержню сообщается малый прогиб. Равновесие стержня под действием силы Р устойчиво, если этот прогиб исчезает после устранения вызвавшей его причины, и неустойчиво, если прогиб увеличивается до тех пор, пока не установится новая форма равновесия стержня с искривленной осью. Приближенное исследование, основанное на линеаризированном уравнении изгиба, по существу не позволяет решать вопрос об устойчивости или неустойчивости какой-либо формы равновесия, это исследование дает возможность найти такое значение нагрузки, при котором равновесие является безразличным. Именно этой задачей было фактически заменено исследование устойчивости упругого стержня в 136.  [c.308]

В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Ограниченность возможности определения критического напряжения в сжатых стержнях по формуле Эйлера заставила ученых искать другие пути решения этой задачи в случаях сжатия за пределом пропорциональности материала. Такими поисками были заняты крупные европейские ученые, в числе которых в Англии Ренкин (1820—1872), в Германии Энгессер (1848—1931), в Швейцарии Тетмайер (1850—1905). Ими были предложены различные эмпирические расчетные формулы. В России вопросами устойчивости занимался профессор Петербургского института инженеров путей сообщения Ф. С. Ясинский (1856—1899). Ему принадлежит идея сведения расчета на устойчивость сжатых стержней к расчету на простое сжатие путем введения коэффициента продольного изгиба ф. Этот метод получил распространение во всем мире. Ясинским, кроме того, решена задача об устойчивости сжатого стержня с промежуточными упругими опорами и другие, связанные главным образом с расчетом элементов мостовых ферм.  [c.562]

Стойка может быть сделана более прочной путем увеличейия момента инерции и радиуса инерции , что может быть очень часто выполнено без какого-либо увеличения площади поперечного сечения путем расположения материала стойки по возможности дальше от нейтральной оси. Таким образом, колонны трубчатого сечения более экономичны, чем колонны со сплошным сечением. Когда гибкость уменьшается, то критическое напряжение увеличивается, и кривая АСВ приближается асимптотически к вертикальной оси. Однако должен быть некоторый предел применения кривой Эйлера для коротких строек. Вывод выражения для критической нагрузки основан на применении дифференциального уравнения (79) для изогнутой оси, а при вьшоде этого последнего предполагалось, что материал совершенно упругий и следует закону Гука Хсм. 31). Поэтому кривая АСВ на рис. 240 дает удовлетворительные результаты лишь для сравнительно гибких стержней, для которых о р остается в пределах упругости материала. Для коротких стоек, для которых а р, полученное из уравнения (147), выше предела пропорциональности материала,кривая Эйлера не дает удовлетворительного результата и нужно прибегнуть к опытам на продольный изгиб стоек, сжатых за пределом пропорциональности. Эти опыты показывают, что стойки из такого материала, как строительная сталь, которая имеет резко выраженный Предел текучести, теряют  [c.228]


Смотреть страницы где упоминается термин Изгиб стержня за пределом упругости : [c.366]    [c.613]    [c.354]    [c.152]    [c.135]    [c.578]    [c.193]    [c.167]    [c.7]    [c.302]   
Прикладная механика (1985) -- [ c.206 ]



ПОИСК



350 — Упругость при изгибе

Изгиб за пределом упругости

Изгиб стержня

Изгиб стержня стержня

Изгиб стержня упругий

Предел при изгибе

Предел упругости

Продольный изгиб стержней в пределах упругости

Стержни в пределах упругости

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте