Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Продольный изгиб стержней в пределах упругости

Продольный изгиб стержней в пределах упругости  [c.192]

В заключение заметим, что методы теории упругости нужно применять к задачам о продольном изгибе стержня с некоторой осторожностью, потому что они дают хорошие результаты, если мы рассматриваем достаточно большие деформации только тогда, когда имеем дело с длинными и тонкими стержнями. Для стержней такого рода первая критическая сила имеет практическое значение, ибо ее величина близка к значению той нагрузки, при которой стержень переходит за предел пропорциональности. Мы рассмотрели задачу о стержне, которая является частным случаем ряда задач, связанных с устойчивостью упругих систем. Отличительной чертой этих задач является то, что, как показывает рис. 115, нагрузка и соответствующее ей перемещение не пропорциональны между собой.  [c.578]


Ф. С. Ясинскому принадлежат выдающиеся исследования по продольному изгибу. В Известиях собрания инженеров путей сообщения были опубликованы его замечательные работы Опыт развития теории продольного изгиба (1892 г.) и О сопротивлении продольному изгибу (1894 г.). Развивая теорию продольного изгиба, основы которой были положены Л. Эйлером, он обобщил экспериментальные исследования устойчивости прямых стержней за пределом упругости а также дал впервые теоретические решения важнейших для мостостроительной практики задач  [c.30]

В о л ь м и р А. С., Продольный изгиб стержней постоянного и переменного сечения за пределами упругости, Научные записки Харьковского механико-машиностроительного института , т. 5, 1940.  [c.832]

Произведенные опыты показали что при достаточной длине трубки формула (261) дает вполне удовлетворительные результаты, если только сжимающие напряжения, соответствующие дкр. не превосходят предела упругости материала. В противном случае формула (261) будет давать, очевидно, преувеличенные значения для критических давлений. Мы можем расширить применение нашей формулы, если только условимся за пределами упругости вместо постоянной величины Е ставить некоторую переменную величину Е, которая может быть вычислена на основании предварительных опытов на сжатие за пределом упругости. При этом мы можем воспользоваться той формулой, которую применяют при исследовании продольного изгиба призматических стержней прямоугольного сечения, и положить  [c.464]

Если представить графически зависимость между силой Р и прогибом / верхнего конца стержня, то иол5 м кривую АВ, изображенную на рис. 41. Кривая эта начерчена в том предположении, что все явление происходит в пределах упругости. За пределами упругости продольный изгиб протекает иначе. Если бы, например, точка С соответствовала началу появления остающихся деформаций, то при дальнейшей нагрузке зависимость между Р и /  [c.265]

Ркр2 > Рп> где Рп —величина сжимающей силы при достижении предела пропорциональности. Отсюда следует, что продольный изгиб стержней наблюдается как в области упругих, так и в области пластических деформаций. Граница, разделяющая эти области, показана на фиг. 326, б в виде штриховой горизонтальной прямой, положение которой определяется ординатой Р -  [c.320]

Стойка может быть сделана более прочной путем увеличейия момента инерции и радиуса инерции , что может быть очень часто выполнено без какого-либо увеличения площади поперечного сечения путем расположения материала стойки по возможности дальше от нейтральной оси. Таким образом, колонны трубчатого сечения более экономичны, чем колонны со сплошным сечением. Когда гибкость уменьшается, то критическое напряжение увеличивается, и кривая АСВ приближается асимптотически к вертикальной оси. Однако должен быть некоторый предел применения кривой Эйлера для коротких строек. Вывод выражения для критической нагрузки основан на применении дифференциального уравнения (79) для изогнутой оси, а при вьшоде этого последнего предполагалось, что материал совершенно упругий и следует закону Гука Хсм. 31). Поэтому кривая АСВ на рис. 240 дает удовлетворительные результаты лишь для сравнительно гибких стержней, для которых о р остается в пределах упругости материала. Для коротких стоек, для которых а р, полученное из уравнения (147), выше предела пропорциональности материала,кривая Эйлера не дает удовлетворительного результата и нужно прибегнуть к опытам на продольный изгиб стоек, сжатых за пределом пропорциональности. Эти опыты показывают, что стойки из такого материала, как строительная сталь, которая имеет резко выраженный Предел текучести, теряют  [c.228]


Однако явление продольного изгиба продолжает существовать и за пределом упругости. Опытным путем установлено, что действительные критические напряжения для стержней средней и малой гибкости (Я < Кред) ниже значений, определенных по формуле Эйлера. Таким образом, в этом случае формула Эйлера дает завышенные значения критической силы, т. е. всегда переоценивает действительную устойчивость стержня. Поэтому использование формулы Эйлера для стержней, теряющих устойчивость за пределом упругости, не только  [c.511]

Работая в области теории продольного изгиба, Энгессер ) предложил расширить область применения формулы Эйлера, введя в нее вместо постоянного модуля упругости Е, переменную величину Et = dalds, которую он назвал касательным модулем упругости. Определяя касательный модуль из опытной кривой сжатия для какого-либо частного случая, он получил возможность вычислять критические напряжения для стержней из материалов, в своем поведении отклоняющихся от закона Гука, а также для стержней из строительной стали при напряжениях выше предела упругости. В связи с этим предложением возникла дискуссия между ним и Ясинским. Последний указал"), что сжимающие напряжения на выпуклой стороне стержня при выпучивании уменьшаются и что в соответствии с испытаниями Баушингера для этой области поперечного сечения следует пользоваться постоянным модулем упругости Е, а не касательным Впоследствии Энгессер переработал свою теорию, введя в нее два различных модуля для двух областей поперечного сечения ).  [c.357]

Ф. С. Ясинский одним из первых указал на необходимость экспериментального и теоретического исследования потери устойчивости за пределами упругости, введя понятие о двух модулях упругости и Модуль Е = onst характеризует жесткость материала в растянутой зоне стержня, выпучивщегося при продольном изгибе. Геометрический смысл модуля Е ясен из рис. 349 E=tga.  [c.365]

Метод и пример. Тонкий модельный стержень, исполненный как тело врящения с выпуклой образующей, лодвэргается опытам продольного изгиба центральной нагрузкой при этом дана нагрузка Рх = 12,50 кг. Модуль упругости материала модели Е,. Требуется найти нагрузку главного сооружения, геометрически подобного модели, но линейно в 10 раз большего, X = 10, и модуль упругости которого 2 не равен Е например 2 = 2А- При этом сделана предпосылка, что род опоры в обоих случаях одинаков и что критическая нагрузка продольного изгиба сравнительного стержня не переходит предела пропорциональности.  [c.390]

Ограниченность возможности определения критического напряжения в сжатых стержнях по формуле Эйлера заставила ученых искать другие пути решения этой задачи в случаях сжатия за пределом пропорциональности материала. Такими поисками были заняты крупные европейские ученые, в числе которых в Англии Ренкин (1820—1872), в Германии Энгессер (1848—1931), в Швейцарии Тетмайер (1850—1905). Ими были предложены различные эмпирические расчетные формулы. В России вопросами устойчивости занимался профессор Петербургского института инженеров путей сообщения Ф. С. Ясинский (1856—1899). Ему принадлежит идея сведения расчета на устойчивость сжатых стержней к расчету на простое сжатие путем введения коэффициента продольного изгиба ф. Этот метод получил распространение во всем мире. Ясинским, кроме того, решена задача об устойчивости сжатого стержня с промежуточными упругими опорами и другие, связанные главным образом с расчетом элементов мостовых ферм.  [c.562]

Основы теории волн в упругом цилиндрическом стержне были созданы Похгаммером и Кри еще в конце прошлого века. Было установлено наличие различных форм собственных волн. В дальнейшем исследования по распространению нестационарных волн в элементах упругих конструкций проводились, как правило, на основе приближенных уравнений, которые получали из соответствующих уравнений статики. Добавление к этим уравнениям инерционных членов позволило построить решения задач о распространении волн, однако некоторые выводы при этом оказались в противоречии с результатами теории упругости. Так, скорость распространения возмущений при динамическом изгибе стержня, определенная по уравнению Бернулли — Эйлера, не имеет верхнего предела, в то время как по теории упругости она должна быть ограничена скоростью продольных волн в сплошной среде. Упомянутое уравнение вообще не позволяет установить наличия фронтов волн. Скорость продольной волны, определяемая приближенным уравнением продольных колебаний стержня, хотя и ограничена, но не совпадает с соответствующей скоростью из теории упругости (см. 35).  [c.10]


В последующем задаче об изгибе балки уделяли много внимания крупные ученые, в числе которых были Мариотт, Лейбниц, Варньон, Яков Бернулли, Кулон и др.. Пишь в 1826 г. с выходом в свет лекций по строительной механике Навье был завершен сложный путь исканий решения задачи об изгибе балки, затянувшийся во времени почти на двести лет. Навье дал правильное решение этой задачи, им впервые введено понятие напряжения. Им же сделан существенный шаг в направлении упрощения составления уравнений равновесия, состоявший в том, что Навье отметил малость перемещений и возможность относить уравнения равновесия к начальному недеформированному состоянию. Это очень широко используемое положение иногда называют принципом неиз жнности начальных размеров. В истории развития механики деформируемого твердого тела важную роль сыграли такие крупные ученые, как Лагранж, Коши, Пуассон, Сен-Венан. Особо следует отметить заслуги Эйлера, впервые определившего критическое значение сжимающей продольной силы, приложенной к прямолинейному стержню (1744). Решение этой задачи во всей полноте тоже заняло по времени почти двести лет Дело в том, что решение Эйлера было ограничено предположением о линейно-упругом поведении материала, что накладывает ограничение на область применимости полученной Эйлером формулы. Применение эюй формулы за границами ее достоверности и естественное в этом случае несоответствие ее экспериментальным данным на долгое время отвлекло интерес инженеров от этой формулы и лишь в 1889 г. Энгессером была предпринята попытка получить теоретическое решение задачи об устойчивости за пределом пропорциональности. Он предложил 1аменить в формуле Эйлера модуль упругости касательным модулем i = da/di. Однако обоснования этому своему предложению не дал. В 1894 г. природу потери устойчивости при неизменной продольной силе правильно объяснил русский ученый Ясинский и лишь в 1910 г. к аналогичному выводу пришел Карман. Поэтому исторически более справедливо назвать его решением Ясинского —Кармана, предполагая, что Карман выполнил это исследование независимо от Ясинского.  [c.7]


Смотреть страницы где упоминается термин Продольный изгиб стержней в пределах упругости : [c.366]    [c.613]    [c.578]    [c.354]    [c.134]   
Смотреть главы в:

Сборник задач по сопротивлению материалов  -> Продольный изгиб стержней в пределах упругости



ПОИСК



350 — Упругость при изгибе

Изгиб за пределом упругости

Изгиб продольный

Изгиб стержня

Изгиб стержня за пределом упругости

Изгиб стержня стержня

Изгиб стержня упругий

Предел при изгибе

Предел упругости

Продольный изгиб iz пределами упругости

Стержни Изгиб продольный

Стержни в пределах упругости

Стержни упругие

Стержни упругие на упругих

Стержни — Стержни упругие

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте