Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Плавка металлов печах

Усилиями Ижевского в институте была создана хорошая металлургическая лаборатория. Она имела небольшие электропечи для плавки металлов, печи для термообработки, микроскопы, различные машины для испытания механических свойств стали и чугуна. Многие из этих машин и  [c.147]

Применяемые для плавки металла печи должны конструктивно отвечать требованиям производства прецизионного литья.  [c.73]

Керамику MgO используют для футеровки печей (при плавке металлов), реакторов, изготовления тиглей и пирометрической аппаратуры.  [c.381]


Рабочий процесс плавки зависит от типа используемой плавильно-заливочной установки. В общем виде он однотипен и состоит из следующих основных этапов подготовки печи к плавке, установки и приварки расходуемого электрода, создания рабочего давления в камере печи и плавки металла.  [c.313]

Рассматриваются вопросы теории, конструирования и эксплуатации индукционных плавильных печей для процессов повышенной точности и чистоты. В их число входят гарнисажные печи, печи с холодным тиглем (для плавки металлов и их сплавов), печи для выращивания кристаллов и печи с управляемым режимом кристаллизации отливки или вытягиваемого слитка.  [c.2]

Существенную роль в решении этой задачи играют индукционные печи для плавильных процессов повьппенной точности и чистоты. К ним относятся, в частности, индукционные печи с холодным тиглем для плавки металла, некоторые типы гарнисажных индукционных печей и индукционные печи с управляемой кристаллизацией отливки.  [c.3]

Особое место занимает проблема незагрязняющей плавки металла. Основными источниками загрязнения (помимо примесей, поступающих с вводимыми в печь материалами) являются реакции компонентов расплава с материалами тигля и атмосферой печи, реакции в печи между компонентами вводимых материалов и механическое размывание тигля. Реакции с атмосферой печи исключают герметизацией последней и обеспечением соответствующего вакуума или контролируемой атмосферы влияние вредных реакций между компонентами вводимых материалов можно уменьшать путем выбора последовательности их введения и другими технологическими приемами.  [c.7]

ИНДУКЦИОННЫЕ ПЕЧИ ДЛЯ ПЛАВКИ МЕТАЛЛА С ХОЛОДНЫМ ТИГЛЕМ  [c.54]

Преимущества электропечей заключаются также в ускорении процесса плавки металла. Дело в том, что завалка шихтой электропечи по сравнению с мартеновской печью сокращается с 2,5—3 ч до 15—20 мин. В электропечах последних конструкций предусмотрена прогрессивная и полностью механизированная завалка сверху, что значительно облегчает труд сталеваров и повышает его производительность.  [c.31]

В сталеплавильных печах машиностроительного производства уже в настоящее время преобладает электроплавка, доля которой в среднем составляет не менее 80%. Весь прирост стального литья в машиностроении в одиннадцатой пятилетке и соответственно потребление электроэнергии на него были рассчитаны исходя из плавки металла в электропечах.  [c.58]

В ряде случаев объединению двух смежных автоматических установок в линию препятствуют либо необходимость визуального контроля качества продукции, либо большая длительность одного процесса. Первое относится к операциям осмотра (и зачистки) стержней, восковых моделей, отливок, второе — к процессу плавки металла в печах периодического действия.  [c.203]


В начале XX в. профессор Киевского политехнического института В. П. Ижевский предложил ряд конструкций электропечей лабораторного типа для плавки металлов и термообработки. Первая такая печь, построенная в 1901 г., предназначалась для переплавки небольшого количества чугуна с железными обрезками или с присадками руды. Керамические стенки разогревались электрическим током, проходящим по заложенным в них электродам. Емкость печи составляла всего 16,5 кг. Печь позволяла получать однородный металл, она была компактной, могла работать на постоянном и переменном токе разного напряжения. В последующие годы печи Ижевского (емкостью до 100 кг) работали на ряде заводов Украины.  [c.132]

Плавка металлов и сплавов для всех способов литья производится в специальных плавильных агрегатах различных конструкций и емкости. В табл. 62 приводятся данные о наиболее распространенных типах плавильных печей и наименования выплавляемых в них сплавов.  [c.161]

Плавильные агрегаты 114, 161, 162 Плавильные печи 114 Плавка металлов 161  [c.970]

Качество материала для труб или трубных заготовок зависит в первую очередь от процесса отливки первичного слитка и последующего электродугового переплава. Этот процесс лучше использовать для получения слитков круглого сечения. Рифленые слитки лучше изготавливать методом непрерывного литья, чтобы избежать горячих треш,ин. Аустенитные стали, для которых необходимо минимальное содержание азота, производят электро-шлаковой плавкой. Разрабатываются печи, в которых дуговая плавка может проводиться под давлением, для получения металла с повышенным содержанием азота. Ранее трубы паропроводов высокого давления изготавливались сваркой секций, полученных  [c.64]

Электроэнергия на плавку металла в печах, кВТ ч  [c.174]

Плавка металла осуществляется в пяти дуговых печах ДС-5МТ емкостью по 5 т.  [c.255]

Плавку металла производят в индукционных тигельных печах с последующей передачей готового металла в раздаточный миксер. Плавильные средства цеха сгруппированы в четыре блока, состоящие каждый из двух плавильных печей и одного тигельного раздаточного миксера. Имеется в виду, что из плавильной печи в миксер металл подают в количестве 20—25% емкости тигля,  [c.255]

Плавка металла производится дуплекс-процессом вагранка горячего дутья производительностью 55 т/ч, индукционный миксер емкостью 60 т и четыре тигельные индукционные печи емкостью по 33 т. Шихту для индукционных печей подсушивают. Для изготовления форм установлены две формовочные линии, оборудованные напольными конвейерами длиной по 375 м. Производительность каждой линии 270 форм/ч. Скорость конвейера регулируют. На каждом конвейере установлено по две автоматические формовочные машины. Период охлаждения отливок до выбивки составляет 45—60 мин и для отливок из чугуна с шаровидным графитом строго контролируется. Каждый конвейер обслуживает самостоятельная смесеприготовительная установка. Стержни изготовляют только по горячим ящикам.  [c.257]

Расход электроэнергии Плавка металла в печах кВт ч  [c.273]

Соединение графита с графитом и металлами вызывается экономическими соображениями, а также необходимостью реализации положительных свойств графита. Примерами таких конструкций являются длинномерные нагреватели, тигли и лодочки для плавки металлов, электроды дуговых печей, крупногабаритные аноды ртутных выпрямителей, нагреватели шахтных печей, высокотемпературные теплообменники, тепловыделяющие элементы и др.  [c.276]

Исследование раскислительной способности углерода в вакууме показало, что достаточно выдерживать металл при давлениях порядка нескольких сотен ньютонов на квадратный метр (мм рт. ст.), при этом раскислительная способность углерода в железе меньше зависит от давления над металлом, чем в железохромоникелевых сплавах. Снижение поверхностного натяжения в жидких сплавах по сравнению с чистым железом обусловливает меньшее значение упругости СО в образующемся пузыре. Важную роль играют обменные реакции металла с футеровкой тигля. Если взаимодействие кислорода и оксид-НЫ.Х включений с углеродом ведет к очищению металла от кислорода, то при реакциях с футеровкой кислород переходит в металл. Практически в первые 20—30 мин плавки в печи емкостью 10 кг скорость первого процесса наибольшая и при этом содержание кислорода в металле достигает минимального значения, а затем либо не изменяется, либо чаще всего возрастает.  [c.205]


В печах периодического действия (УППФ 1М) загрузку тигля 2 шихтой, установку керамической формы 4 под заливку осуществляют при открытой камере, а плавку металла и его заливку в форму - в вакууме. Кристаллизация отливки происходит в термостате 5.  [c.248]

Наибольшее распространение как для первого, так и для второго переплава получили вакуумные элсктродуговые печи с формированием слитка в медной водоохлаждаемой изложнице ( глухом кристаллизаторе), который показан на рис. 147. Для плавки металла в печах, предназначенных для производства отливок, в качестве расходуемого электрода используют слитки первога переплава. По химическому составу металл расходуемого электрода 3 соответствует той марке сплава 4, из которого изготавливают отливку.  [c.305]

Основные свойства канальных печей, как класса индукционных электротермических установок, предназначенных для плавки металлов, сводятся к следующему. Главная особенность индукцион-  [c.268]

Печи для плавки цинка. В канальных печах переплавляется катодный цинк высокой чистоты, не требующий рафинирования. Температура плавления цинка равна 419 °С, температура разливки 480—500 °С, удельная мощность в каналах составляет (30—40) 10" Вт/м . Расплавленный цинк, обладая высокой жидко-текучестью, легко проникает в поры футеровки и вступает в соединение с футеровочными материалами. Поскольку процесс пропитывания футеровки цинком ускоряется с увеличением гидростатического давления металла, печи для плавки цинка имеют прямоугольную ванну небольшой глубины и индукционные единицы с горизонтальными каналами. Ванна разделяется на плавильную и разливочную камеры внутренней перегородкой, в нижней части которой имеется окно. Чистый металл перетекает через окно в разливочную камеру, примеси же и загрязнения, находящиеся у поверхности, остаются в плавильной камере. Печи оборудуются загрузочным и разливочным устройствами и работают в непрерывном режиме катодный цинк загружается в плавильную камеру через проем в своде, а переплавленный металл разливается в изложницы. Разливка может осуществляться вычерпыванием металла ковшом, выпуском его через клапан или выкачивапнем насосом.  [c.277]

В книге рассматриваются индукционные печи только для плавки металла, причем промьппленного назначения. Индукционные печи лабораторного назначения, а также устройства для зонной плавки в книгу не включены. Не рассматриваются также индукционные печи с холодным тиглем для плавки оксидов. По этим вопросам адресуем заинтересованных читателей к [2, 3, 25], в которых они найдут также и необходимые библиографические перечни.  [c.3]

Существенно увеличить глубину расплава в гарнисажной печи и улучшить равномерность его температуры принципиально возможно, изменив место введения тепловой энергии в загрузку. Это достигается глубинным индукционным нагревом с помощью обычного охватывающего загрузку цилиндрического индуктора, гштаемого током достаточно низкой частоты. Впервые печь такого типа с порошкообразным гарнисажем бьша предложена в 1954 г. Н.П. Глухановым, Р.П. Жеже-риным и А.А. Фогелем с соавторами [6], однако для плавки металлов она не нашла применения. В 1967 г. М.Г. Коган обосновал возможность создания аналогичной печи с монолитным металлическим гарнисажем, работающей без тигля [7] — см. 14 и 15.  [c.8]

Идея ИПХТ была предложена еще в 1926 г. немецкой фирмой Сим-менс—Гальске [10]. Основой ее является выполнение проводящего охлаждаемого тигля с вертикальными разрезами, препятствующими возникновению в тигле кольцевых токов, коаксиально охватывающих загрузку и экранирующих ее от магнитного поля индуктора. Однако для реализации этой идеи необходимо было решить ряд сложных задач обеспечить передачу расплаву достаточного количества энергии, необходимого для устойчивого протекания рабочего процесса в условиях контактной теплоотдачи от расплава к холодному тиглю увеличить до приемлемых значений КПД, несмотря на электрические потери в тигле и предотвратить электрические пробои на секции тигля в его ионизированном рабочем пространстве. Это оказалось настолько сложным, что в течение многих лет попьяки создания работоспособных ИПХТ для плавки металлов (см., например, [11]) не приводили к успеху, и только после систематических исследований ВНИИЭТО, начатых в 1961 г., удалось к 1965 г. закончить поисковые работы, завершившиеся созданием устойчиво работающих лабораторных печей. К 1980 г. было в основном завершено исследование технологических возможностей ИПХТ-М, создание инженерных основ их конструирования, разработка и опробование полупромышленных пеЧей (руководители работ до 1978 г. - Л.Л. Тир, с 1978 г. — А.П. Губченко). С 1980 г. начат вы-  [c.9]

В 17 рассматриваются индукционные печи для плавки металла с направленной кристаллизацией отливок. В их числе печи для кристаллизации по методу Бриджмена—Стокбергера. Рассматриваются также возможности ИПХТ-М с регулируемым индукционным обогревом слитка вблизи фронта кристаллизации, предложенным Л.Л. Тиром, П.М. Чайкиным и Л.Е. Никольосим [14].  [c.10]

Влияние контакта с твердой охлаждаемой металлической поверхностью на чистоту расплава. Чистота материалов, плавящихся в контакте с поверхностью охлаждаемого твердого металла, исследовалась экспериментально в лабораторных условиях при зонной очистке металлов и полупроводников в металлических водоохлаждаемых контейнерах, а также контролировалась в производственных условиях при эксплуатации индукционных печей с холодным тиглем для плавки металла в промьшшенности. По данным Х.Ф. Стирлинга и Б.В. Варрена, при плавке кремния и германия в охлаждаемой серебряной лодочке загрязнений расплава серебром не обнаруживается даже с помощью радиохимических методов анализа [15]. При использовании медных тиглей в промьпиленной практике загрязнений расплава медью, выхо-  [c.11]

Назначением индукционных печей с холодным тиглем для плавки металла (ИПХТ-М) является плавление исходных материалов и технологическая обработка расплава в условиях отсутствия взаимодействия этих материалов с материалами тигля.  [c.54]

Для вакуумных процессов, а также для предварительной откачки печи при заполнении контролируемой атмосферой печь снабжается вакуумной системой, состоящей из вакуумпроводов, затворов и вакуумных насосов. При плавке металлов с высокой упругостью паров в плавильной камере может создаваться избыточное давление (обычно до 10 Па).  [c.74]


При гарнисажной плавке металл плавят в твердой оболочке того же химического состава, что и расплав, защищая таким образом последний от загрязняющего его контакта с конструктивными элементами печи. М.П. Глуханов и А.А. Фогель с соавторами предложили две схемы гарнисажных печей с индукционным нагревом (рис. 48) с введением энергии через открьггое зеркало ванны и с введением ее через боковую поверхность загрузки (сквозь гарнисаж) [6].  [c.98]

Фомин Н.И. Исследование и разработка индукционных печей с холодным тиглем для плавки металлов и высокотемпературных физико-химических исследований. Автореф. дис. на соиск. учен, степени канд. техн. наук. М., 1971 (ВНИИЭТО).  [c.118]

Плавка металла для полутвёрдых валков ведётся преимущественно в пламенных или мартеновских печах, реже в вагранках, так как получение в вагранке низкоуглеродистого (ниже 3%) чугуна, обязательного для полутвёрдых валков, связано с затруднениями. Применяется и дуплекс-процесс расплавленный в вагранке чугун переливается в пламенную печь или электропечь, куда добавляется сталь и другие присадки.  [c.219]

Применения. Газовые разряды применяют в газосветных приборах, в электронных диодах с газовым наполнением, тиратронах, ртутных выпрямителях (игнитронах), в качестве стабилизаторов напряжения в счётчиках Гейгера ядер-ных частиц, в антенных переключателях, озонаторах, маг-нитогидродинамшеских генераторах. Широко используются электродуговая сварка, электродуговые печи для плавки металлов, дуговые коммутаторы. Получили большое распространение генераторы плотной равновесной низкотемпературной плазмы с К, /)--1 атм—плазмотроны (дуговые, индукционные, СВЧ). В них продуванием холодного газа через соответствующий разряд получают плазменную струю. Тлеющий и ВЧЕ-разряды используют для создания активной среды в лазерах самой разл. мощности—от мВт до многих кВт, в плазмохимии. Эти и др. приложения, использование результатов исследований Э. р. в г. в технике высоких напряжений поставило физику газового разряда в ряд наук, к-рые служат фундаментом совр, техники.  [c.514]

Разработка конструктивно-технологических вариантов применения природного газа для плавки чугуна в вагранках, основанная на изучении многочисленных попыток решения этого вопроса, продолжается до настоящего времени. На ряде предприятий Харькова, Ростова и других городов в вагранках производительностью от 1,5 до 7 т/ч успешно осуществлена частичная замена кокса природным газом. Туннели газовых горелок рекомендуется размещать в этом случае над фурменным поясом, но ниже уровня коксовой колоши [Л. 143]. Применение коксогазовых вагранок позволяет удешевить плавильный процесс при очень небольших ка1Питаловло-жениях, но не решает вопроса повышения температуры выплавляемого чугуна. Чисто газовые вагранки производительностью до 10 г/ч успешно эксплуатируются на ряде бакинских заводов. Однако широкое распространение чисто газовых вагранок (особенно высокотемпературных) сдерживается жесткостью требований, предъявляемых к огне-и шлакоупорности футеровки и силикатной колоши, а также трудностями перегрева расплавленного металла, поверхность которого покрыта малотеплопроводным жидким шлаком. В связи с этим газовую плавку некоторых сортов чугуна (например, используемых лля тонкостенного и качественного литья) приходится комбинировать с электрическим перегревом. Применительно к этим случаям возникают предложения об осуществлении плавки металла в сравнительно простой печи на дешевом топливе  [c.171]

Для реализации процесса восстановления ободьев катков заливкой жидким металлом Институт проблем литья АН УССР разработал технологию и комплект оборудования, включающий шестипозиционную установку УНК-6 и роторную установку для зачистки и нанесения лакового покрытия на обод катка. Нагрев обода катка осуществляют высокочастотной установкой И32-100/2,4, плавку металла проводят в двух индукционных печах ИСТ-0,16. Расплавленный металл заливают во вращающуюся форму (кокиль), затем каток автоматически сбрасывается на платформу подвесного конвейера и подается на выбивную решетку, на которой происходит автоматическая выбивка катков. Литейные приливы зачищают на обдирочношлифовальном станке. Дефекты заваривают.  [c.377]

Особенностью оксида циркония (ZrOj) является слабокислотная или инертная природа, низкий коэффициент теплопроводности. Рекомендуемые температуры применения керамики из ZrOj 2000— 2200 °С она используется для изготовления огнеупорных тиглей для плавки металлов и сплавов, как тепловая изоляция печей, аппаратов и реакторов, в качестве покрытия на металлах для защиты последних от действия температур.  [c.516]

Наибольший интерес представляет изучение поведения титана при легировании стали. Исследование материального баланса титана при электроплавке нержавеющей стали, проведенное с нашим участием [54], показало, что ири общей потере титана при легировании около 50% за счет кислорода воздуха окисляется 25%, окислами кремния, марганца, железа и хрома шлака — около 10%, всплывает в виде нитридов в шлак около 5%. При этом основное окисление титана происходит до выпуска плавки из печи. Процесс окисления растворенного в металле титана в результате массоиередачи кислорода через шлак может быть описан следующим образом  [c.83]

При совпадении фактических содержаний элементов с расчетным плавку подготавливали к выпуску. Первой выпускали в ковш плавку из печи А, а на нее плавку из печи Б. Такой порядок выпуска плавок гарантировал надлежащее смешение металла и его однородность. Следует отметить, что в период освоения этой технологии были трудности с обеспечением в готовом металле необходимого содержания углерода и титана. Содержание углерода в плавке А после присадки ферротитана значительно возрастало. Титан же в плавке Б сильно окислялся. И то и другое приводило к браку. Для устранения науглероживания металла были приняты меры по защите зеркала ванны от науглероживающего воздействия электродов. Для снижения угара титана и обеспечения необходимого содержания его в металле ферротитап стали вводить в обе печи Л и Б в отношении 3 1.  [c.102]

Если выплавляют сталь Х25Т, то перед вводом ферротитана, как и при выплавке Х18Н10Т, шлак скачивают до оголения металла и при выключенном токе вводят ферротитан по расчету. Куски ферротитана топят в металле ломами или железными гребками, после чего присаживают шлаковую смесь из извести и плавикового шпата в количестве около 1% от массы металла. Печь включают на 10—15 мин для проплавлення смеси, проверяют температуру металла и плавку выпускают.  [c.171]


Смотреть страницы где упоминается термин Плавка металлов печах : [c.319]    [c.138]    [c.420]    [c.193]    [c.262]    [c.286]    [c.117]   
Справочник рабочего литейщика Издание 3 (1961) -- [ c.302 ]



ПОИСК



Металлы — Плавка



© 2025 Mash-xxl.info Реклама на сайте