Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Хладноломкость, испытание

При испытании на удар с определением Др необходимо проанализировать вид излома. Излом должен быть полностью вязким (волокнистым, чашечным), т. е. испытание должно быть выше порога хладноломкости (выше Тв). Если испытание проводили при температурах, лежащих внутри порога хладноломкости (Гв — Гв)—см. рис. 53, то работа распространения не имеет полного значения, так как она была затрачена только на образование участков с вязким изломом.  [c.81]

Существуют способы оценки склонности металла к возникновению хрупкого разрушения и его сопротивления распространению хрупкой трещины. Наиболее распространенным способом оценки склонности к хрупкому разрушению являются испытания серии образцов Шарпи с V-образным надрезом на ударный изгиб при различных температурах. Критерий оценки — критическая температура перехода от вязкого к хрупкому разрушению 7, или порог хладноломкости (рис.  [c.545]


Для обеспечения эксплуатационной надежности сосудов, работающих под давлением при отрицательных температурах, выбор материалов должен производиться с учетом их порога хладноломкости. Существующая методика определения этого показателя (Т 50) несовершенна, а значения ударной вязкости металла, получаемые при испытаниях, не могут служить критерием оценки его хладноломкости.  [c.51]

Далее необходимо учитывать различие температуры хладноломкости образца, для которого производились испытания, и материала корпуса А7м —так называемый масштабный фактор. Согласно работе [55],  [c.72]

Испытания на ударную вязкость позволяют выявить склонность к хладноломкости раньше, чем обычные методы испытания. Если при испытании гладких образцов на растяжение переход от вязкого разрушения к хрупкому наблюдается при очень низких температурах от —100 до —200°С, то в испытаниях на ударную вязкость этот переход наблюдается при более высоких температурах. Для малоуглеродистой стали в зависимости от обработки стали переход происходит в интервале от —20 до +40°С.  [c.72]

Для количественного сопоставления склонности материалов к хрупкому разрушению в зависимости от температурных условий эксплуатации широко используется способ серийных испытаний на ударную вязкость стандартных образцов с надрезом. По результатам этих испытаний обычно строят температурные зависимости ударной вязкости Ои и доли вязкой составляющей в изломе Fb- Для хладноломких металлов эти зависимости имеют резкий спад, по которому определяют критическую температуру хрупкости Гкр. При более пологих переходах в область хрупкого состояния используют условные приемы определения Гкр по допуску на снижение Дн или Fs- Полученная из испытаний критическая температура хрупкости Гкр(°К) сопоставляется с минимальной температурой металла в условиях эксплуатации Та.  [c.20]

Многие авторы считают, что хладноломкость молибдена — характерное его свойство, а основная причина хладноломкости — резкое повышение предела текучести при низких температурах. Поэтому трудно рассчитывать на устранение хладноломкости молибдена или снижение температуры перехода к хрупкости при обычных металлургических процессах. В качестве довода в пользу природной хрупкости молибдена приводят транскристаллитный характер разрушения, наблюдаемый при некоторых испытаниях. Однако фрактографическими исследованиями установлено, что излом почти всегда происходит по границам зерен, да-  [c.125]


Температура испытания. С ростом температуры пластичность всех металлов повышается (прочность понижается) даже такие нетипичные металлы (полуметаллы), как сурьма (выше 300°С) и висмут (выше 100°С), пластичны. Вблизи точки плавления пластичны типичные неметаллы, например кремний, германий, сера и даже алмаз. Природная пластичность чистых металлов при низких температурах меньше, но она достаточна для обработки их давлением. У чистых металлов нет температурных зон хрупкости, горячеломкости, хладноломкости.  [c.191]

Кривые вязкой составляющей в изломе для ванадия указанной чистоты, результаты ударных и статических испытаний представлены на рис. 25 и 26. Ванадий с содержанием примесей 1000 и 1800 анм при температуре" —196°С еще не переходит в хрупкое состояние при уменьшении чистоты ванадия четко обнаруживается постепенное повышение порога хладноломкости. Порог хладноломкости ванадия в зависимости от содержания кислорода и азота, определенный по представленным на рис. 25 и 26 данным, приведен ниже  [c.31]

Следует подчеркнуть, что оценка хладноломкости материала по критериям вида изломов образца (процент кристаллической составляющей излома, сужение дна надреза, вид поверхности разрушения непосредственно вблизи дна надреза) не исключает субъективности подхода разных исследователей. По виду излома нельзя определить количество энергии, поглощенной при развитии разрушения. Поэтому при определении склонности стали к хрупким разрушениям по результатам, ударных испытаний следует отдать предпочтение методам оценки критической температуры хрупкости по величине работы распространения трещины в образце [40, 41].  [c.36]

Методы испытания на основе механики разрушения использованы для оценки вязкости разрушения и скорости роста трещины усталости материалов для сосудов под давлением в космической технике, емкостей для жидкого природного газа и материалов для сверхпроводящих электрических машин. Имеется несколько обзоров по вязкости разрушения при низких температурах в работе [49] приведены данные по Ki материалов авиакосмической техники в интервале температур 20—300 К, в обзоре [50] — характеристики высокопрочных сплавов, в работе [51] — свойства криогенных никелевых сталей. Данные по скорости роста трещины усталости при 4 К содержатся в обзоре [52]. Скорость роста трещины различных материалов при охлаждении уменьшается, за исключением сталей при температурах ниже температуры хладноломкости. Свойства  [c.24]

Момент наступления хладноломкости смещается в сторону возрастания температур от следующих причин 1) увеличения ширины образца 2) заострения формы надреза 3) увеличения скорости испытания 4) неправильной термической обработки, вызвавшей укрупнение зерна, явление отпускной хрупкости И т. д. 5) наклёпа и старения после наклёпа 6) повышения содержания фосфора, кремния и др.  [c.39]

У титана признаки перехода в хрупкое состояние наблюдаются при температурах значительно ниже —196° С. По данным [64], понижение температуры испытания от —196 до —258,8° С сопровождается уменьшением б и ip, причем б уменьшается от 73 до 48%. Однако полное охрупчивание (хладноломкость) титана в области практически достижимых температур не наблюдается.  [c.94]

При повышенном содержании водорода становится явно выраженным порог хрупкости, аналогичный порогу хрупкости хладноломких металлов. В частности, у титана с содержанием водорода около 0,03% порог хрупкости при испытании гладких  [c.116]

Порог хладноломкости у ОЦК-металлов наиболее явно выражается при испытании на ударный изгиб гладких образцов. Подобное явление наблюдается и у -сплавов титана. Как видно из рис. 54, при испытании гладких образцов в интервале температур (—60)-н(—100)° С имеет место значительный разброс данных (от  [c.121]

Поскольку хрупкий и вязкий характер разрушения при ударном изгибе для стали можно четко различить по виду излома, порог хладноломкости нередко определяют по количеству волокна В, %) матовой — волокнистой составляющей в изломе. Количество волокна в изломе определяется как отношение площади волокнистого (вязкого) излома к первоначальному расчетному сечению образца. Далее строится сериальная кривая процент волокна — температура испытания (рис. 70). За порог хладноломкости принимается температура, при которой имеется 50 % волокна 50 (рис. 70), что примерно соответствует КСТ/2. Для ответственных деталей за критическую температуру хрупкости нередко принимают температуру, при которой в изломе имеется 90 % волокна (4о), а ударная вязкость сохраняет высокое значение. Нередко определяют верхний в порог хладноломкости,  [c.100]


Перед испытанием образец доводится до заданной температуры в ванне, или подогреваемой на электроплитке или охлаждаемой при помощи жидкого воздуха. Изображенные на рис. 431 кривые а, б, в показывают, что понижение температуры вызывает резкое уменьшение ударной вязкости и, таким образом, может вызвать хрупкое разрушение частей конструкций. Это явление неоднократно наблюдалось на практике так называемая хладноломкость рельсов, бандажей и других деталей конструкций железнодорожного транспорта неоднократно вызывала большие затруднения.  [c.532]

Наконец, следует отметить, что на хрупкость материала могут очень сильно влиять так называемые остаточные напряжения, которые могут получиться в материале при закалке, при холодной прокатке или при недостаточной температуре горячей прокатки, когда материал получает наклеп. Опытами на растяжение такие напряжения, как правило, не могут быть выявлены. Остаточные напряжения обычно связаны с возникновением объемного напряженного состояния в материале в связи с этим возможно хрупкое разрушение. Такие случаи встречались при изготовлении мощных двутавровых балок со сравнительно тонкими полками. В нашей практике был случай хрупкого разрушения двутавровой балки № 50 при сбрасывании ее на землю в морозный день. Результаты статических испытаний, химического и металлографического анализа показали, что материал как будто вполне доброкачественный. Лишь ударные испытания при различных температурах обнаружили резкую хладноломкость для образцов, вырезанных у края полки двутавра,— в наиболее наклепанном месте. Что касается влияния на хрупкость химического состава сталей, то ударная вязкость понижается, как это видно из таблицы 21, с увеличением количества углерода, т. е. с повышением предела прочности и уменьшением пластических свойств стали. Весьма неблагоприятно отражается на сопротивлении удару, особенно при низких температурах, наличие фосфора. Поэтому на практике при изготовлении материала для деталей, работающих на удар, всячески ограничивают примесь этого элемента.  [c.533]

Различные материалы при их использовании в виде изделий подвергаются как статическим, так и динамическим временным воздействиям. Ударная вязкость является интегральной характеристикой, учитывающей работу зарождения трещины и работу распространения вязкой трещины в материале. Значения величины ударной вязкости используются для определения порога хладноломкости в металлических сплавах, а в горном деле эта величина для горных пород в большей степени, чем прочность, характеризует разрушаемость отдельностей массива взрывом. Для определения условия возникновения хрупкого состояния и оценки поведения материалов в условиях повышенной скорости деформирования проводят динамические испытания. Известны два способа динамических испытаний  [c.100]

Порог хладноломкости, работа распространения (и зарождения) трещины определяется посредством ударных испытаний (подробнее см. с. 80—81), однако получаемые при этом цифры (Гв, Тп, T q, flp) и др. не могут быть использованы в прочностных расчетах (в этом их принципиальное отличие от пределов текучести и прочности). Указанные характеристики надежности сравнительно просто определимы. Зная нх, можно сказать, какой материал лучше, какой надежнее, при сравиенпи двух или более материалов, но нельзя по ним рассчитать деталь, установить расчетом се размеры.  [c.75]

Сто, Оо.г, твердости) не наблюдается, но в результате измельчения зерна понижается порог хладноломкости, увеличивается в высокопрочных сталях доля иязко11 составляющей в изломе, что при обычных испытаниях приводит к повышению пластических (ф) и вязких (йц) свойств (рис. 228).  [c.283]

Порог хладноломкости — температура, при которой 50% волокна в изломе для улучшенного состояния (при ав= 100 кгс/мм ), определяемый по уда рным испытаниям ладрезанных (г=1 мм) образцов сечением 10ХЮ м.м (при сквозной прокаливаемости во всех случаях).  [c.385]

При ударных испытаниях выше порога хладноломкости образец не разрушается, а изгибается между опорами копра. Появление хрупкости при понижении температуры заключается в том, что для рекристаллизовапиого состояния отсутствие разрушения сменяется на хрупкое разрупкмше, рабо-  [c.531]

Сочетание объемного растяжения, понижения температуры и повышения скорости деформирования способствует образованию хрупких состояний и использовано в методах серийных испытаний на ударную вязкость по Шарни и Менаже. По результатам этих испытаний строят температурные зависимости удельной энергии разрушения при ударном изгибе образцов с надрезом. Ударные испытания образцов с надрезом позволяют оценить склонность материала к образованию хрупкого состояния с понижением температуры, которая характеризуется как хладноломкость.  [c.14]

Тем не менее условия испытаний дня определения Т о должны быть постоянными. Это прежде всего скорость деформирования (обычно 3-5 м/с) и сечение образца (10 X 10 мм). Острота надреза не оказьтает существенного влияния на положение порога хладноломкости, как и  [c.28]

Порог хладноломкости — характеристика, чувствительная к самым различным, порой невыявляемым при других испытаниях факторам.  [c.29]

При постоянных параметрах испытания (сечение образца, скорость деформирования) на порог хладноломкости оказьшают влияние следующие факторы а) размер зерна (чем крупнее зерно, тем выше порог хладноломкости) б) наличие второй фазы, в особенности дисперсной (приводит к повышению порога хладноломкости) в) чистота металла (ее повышение, в особенности по примесям внедрения, способствует понижению порога хладноломкости) г) образование твердых растворов замещения (как правило, оно приводит к повышению порога хладноломкости, впрочем, имеются важные исключения из этого положения - никель в сплавах железа, рений в сплавах молибдена и др.).  [c.29]


Значительное различие в свойствах обнаружено для ванадия неодинаковой частоты в результате испытаний при разных температурах на ударный и статинеский изгиб (рис. 24). Для чистого ванадия (О + N = 1000 анм) ударная вязкость при всех температурах равна 12 кгс м/см при 100%-ном вязком изломе. Следовательно, у ванадия такой чистоты порог хладноломкости ниже -196°С. При статическом изгибе образцы в интервале температур от +20 до -196°С не разрушались.  [c.31]

Применение никеля при легировании стали увеличивает ее вязкость и понижает критическую температуру хладноломкости [53, 55]. Высокая хладостойкость малоуглеродистых никелевых сталей позволяет широко использовать их в условиях низких температур. Известно [56], что в стали с 8— 9%-ным содернсанием никеля даже при температуре испытания— 196°С излом ударных образцов остается (на 70— 80%) волокнистым. Однако влияние никеля на механические свойства стали неоднозначно избыточное легирование стали никелем может снизить запас вязкости [55]. Смягчающее действие никеля зависит от содержания в стали углерода, марганца, бора, кремния и вольфрама [51]. В ферритных и малоуглеродистых сталях никель повышает запас вязкости тем сильнее, чем больше его содержание и чем меньше в стали углерода. С повышением количества углерода и общей легированности стали благоприятное влияние никеля умень-  [c.40]

Для каждого рассмотренного случая технологического режима сварки полностью выдерживалась описанная методика проведения экспериментов, в соответствии с которой из-потавливались составные валиковые пробы и сварные соединения для определения механических характеристик. В результате последующих испытаний получено множество температурных зависимостей ударной вязкости различных участков сварного соединения, исполненного по конкретному технологическому режиму. Имея такую зависимость, можно определять критическую температуру хрупкости для кан дого случая. В наших опытах в качестве критической температуры брали верхний порог хладноломкости (максимальная температура, при которой начинается резкое падение значений ударной вязкости)—3 кгс-м/см . Установленные при этом верхние пороги хладноломкости различных участков сварных соединений, изготовленных при разных режимах, сопоставлялись с соответствующими значениями погонной энергии сварки, приведенными к одинаковой толщине проб. Такой подход позволяет более четко выявить в конкретных случаях наиболее оптимальный режим сварки, обеспечивающий лучшую хладостойкость сварного соединения (рис. 24—26).  [c.68]

Испытание некоторых сталей на ударную вязкость пока- зало, что термическая обработка существенно влияет на их склонность к хрупкости (рис. 57). Так, хладноломкая в состоянии поставки сталь Ст. Зкп после закалки показала лучшие результаты из данной испытанной группы сталей. Худшей термической обработкой для испытанных сталей является отжиг, который дает гсрупное зерно феррита и грубое строение пластинчатотч) перлита. Поэтому отжиг не может быть рекомендован в качестве заключительной термической обработки для деталей машин, эксплуатируемых на Севере. Наиболее высокую хладостойкость сталей обеспечивает нормальная закалка с последующим высоким отпуском.  [c.149]

В работе [86] описан прибор конструкции И. А. Гиндина и Я. Д. Ста-родубова для изучения микротвердости и микроструктуры различных материалов как при охлаждении ниже 0° С, так и в процессе низкотемпературного (10—300° К) деформирования. Прибор снабжен алмазной пирамидой, охлаждаемой до температуры опыта, а также оптической системой, с помощью которой определяются размеры наносимого на образец отпечатка при температуре испытания и исследуется микроструктура. На этом приборе наблюдают фазовые превращения, старение и распад метастабильных структур при активизации пластическим низкотемпературным деформированием или только при охлаждении. Кроме того, с помощью данного прибора можно изучать закономерности зарождения и развития трещин в твердых телах, что весьма важно для установления физической природы хладноломкости металлов и сплавов.  [c.193]

После ВТМО сталь типа бйС Х обладает 1акже повышенным запасом пластичности в условиях низкотемпературных испытаний и примерно на 20° С более низким порогом хладноломкости при практически полном подавлении интеркристаллитного характера разрушения 110]. На стали 55ХГСФ наряду с повышением всего комплекса механических свойств ВТМО повышает усталостную прочность с 47 кгс/мм до 63 Krt/мм и работу распространения трещины [79].  [c.39]

Для контроля хладноломкости периодически (для каждой третьей плавки) определяется ударная вязкость при температуре — 20 С, причём средний результат испытания четырёх образцов должен быть не менее 4 кгм1слА.  [c.370]

В течение 10 ч, сохраняют наивысший комплекс механических свойств Ста = 650—670 МПа сго,2 = 460—560 МПа, б = = 12—13 %. Серия испытаний на ударный изгиб показала, что наиболее низкий порог хладноломкости имеют также плавки, стабилизированные ванадием,- и обнаруживаюш ие наибольшую структурную стабильность (—90 -5--70 °С) наиболее высокий порог у плавок без стабилизаторов (—70 -i--50 °С).  [c.98]

Очень важное значение имеют испытания на удар при повышенных и рабочих температурах. Ряд сталей обладает низкой ударной вязкостью при 20° С, что связано не только со смещением порога хладноломкости металла в сторону положительных температур, но иногда и с дефектами термической обработки. В этих случаях испытания производят лри температуре 50° С, и если при этом величина ударной вязкости соответствует требования ТУ, деталь пропускают в производство естественно, что это допускается только для деталей, работающих при по-выщенных температурах. Ударную вязкость применяемого металла необходимо контролировать на всем диапазоне температур, от комнатной до максимальной рабочей, чтобы установить нечувствительность стали данной марки к тепловой хрупкости. Для определения ударной вязкости при повышенных и рабочих температурах важно совпадение температуры образца в момент его разрушения с заданной температурой испытания. Для испытания при высоких температурах используют стандартные образцы типа Менаже.  [c.437]

Очевидно, что переход от практически равномерней деформации при низких температурах к локализованной при средних температурах вызван уменьшением способности титана к физическому упрочнению. Вследствие этого уменьшается равномерная деформация и полное удлинение. Подобная зависимость равномерной и полной деформации от температуры испытания наблюдается и на других металлах. В частности (рис. 37), у А1, Ni, РЬ повышение температуры сопровождается уменьшением б и ippaaH с одновременным ростом ф. У железа это явление выражено менее явно из-за хладноломкости. Из этих данных следует, что о действительном охрупчивании свидетельствует одновременное уменьшение б и -ф. Уменьшение б при росте или неизменности ip указывает лишь на уменьшение способности к упрочнению.  [c.94]


Водородная хладноломкость. Как известно [63], истинное сопротивление в момент разрыва (5J в области низких температур может резко снижаться при введении в титан водорода. У нелегированного титана с содержанием водорода 0,001% S, при понижении температуры непрерывно увеличивается, но при содержании водорода 0,012% увеличивается при понижении температуры только до —70° С. При дальнейшем уменьшении температуры испытания рост прекраш,ается. Увеличение содержания водорода сопровождается уменьшением уровня предельной прочности и расширением интервала температур, в пределах которого сохраняет постоянное значение. Напомним, что предел текучести мало изменяется при введении водорода и непрерывно повышается при снижении температуры испытания. Поэтому при определенных содержании водорода и температуре сопротивление разрыву оказывается меньше предела текучести. Металл переходит в хрупкое состояние. Снижение 5 связано с тем, что водород в титане находится в виде гидридной фазы, обладаюш,ей малым сопротивлением отрыву. При этом гидриды имеюг не глобулярную, а пластинчатую форму. В связи с этим микротреш,ины, возникаю-ш,ие при отрыве по гидридным пластинкам, оказываются больше критического размера трещ,ины, необходимого для хрупкого разрушения.  [c.116]

Дополнительно были проведены микрофрактографические исследования поверхностей изломов при различных температурах испытаний (рис. 6) и определен порог хладноломкости стали по количеству хрупкой и вязкой состав-ляюптих. Найденное при этом значение порога хладноломкости совпало с величиной, приведенной выше.  [c.11]

Порог хладноломкости определяют при испытании ударным изгибом надрезанных образцов для разных температур. Затем строят кривую зависимости ударной вязкости от температуры испытания (так называемую сериальную кривую по Н. Н. Да-виденкову) (рис. 70).  [c.100]


Смотреть страницы где упоминается термин Хладноломкость, испытание : [c.781]    [c.74]    [c.70]    [c.70]    [c.72]    [c.127]    [c.67]    [c.39]    [c.158]    [c.11]    [c.101]   
Справочник по специальным работам (1962) -- [ c.129 , c.133 ]



ПОИСК



Испытание металла хладноломкость

Испытания микромеханические хладноломкость

Испытания на хладноломкость и критическую температуру хрупкости

Способы оценки хладноломкости при динамических испытаниях

Хладноломкость



© 2025 Mash-xxl.info Реклама на сайте