Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение на дуге при сварке плавящимся

Примечание. Напряжение на дуге при сварке плавящимся электродом в аргоне с добавкой углекислого газа —20 -30 в, в гелии — 26—39 в.  [c.77]

Рекомендуемые напряжения на дуге при сварке в углекислом газе плавящимся электродом  [c.328]

Зажигание и горение дуги протекают лучше на постоянном токе. Однако независимо от рода тока напряжение зажигания дуги больше по величине, чем напряжение ее горения. При сварке плавящимся электродом возбуждение и горение дуги в основном проходят в парах металла, легко ионизируемых при высокой температуре. При сварке неплавящимся электродом в защитных газах горение дуги в большей мере поддерживается ионизацией защитного газа (аргона, гелия, их смеси, углекислого газа).  [c.86]


Для практики сварочных работ большое значение имеет знание процессов, возникающих в дуговом промежутке при сварке плавящимся электродом в связи с переносом расплавленного металла электрода в сварочную ванну. В зависимости от типа переноса электродного металла изменяются производительность сварки, характер формирования шва и качество сварных соединений. В свою очередь тип переноса металла обусловлен диаметром электродной проволоки, силой тока сварки и напряжения дуги, полярностью тока и совокупностью сил, действующих на капли расплавленного металла электродной проволоки силы тяжести, силы поверхностного натяжения, электродинамической силы и др.  [c.89]

При дуговой сварке других видов параметры дугового процесса имеют значительную случайную составляющую и выделение информации о положении поверхности изделия существенно усложняется. В ряде случаев для получения приемлемой точности оказывается необходимо применение интеграла измеряемого сигнала и методов, основанных на анализе случайных процессов. Следящие системы для наведения электрода на линию соединения, в которых в качестве датчика используется сварочная дуга, стали интенсивно развиваться только после появления микроэлектронной техники и необходимости создания средств адаптации для сварочных промышленных роботов, применительно к которым преимущества использования сварочной дуги в качестве датчика имеют решающее значение при выборе методов и Технических средств адаптации. В большинстве известных систем рассматриваемого типа для сварки плавящимся электродом в качестве информационного параметра используется сила сварочного тока. При сварке неплавящимся электродом с применением источника питания с крутопадающей характеристикой более информативным параметром оказывается напряжение на дуге.  [c.111]

Держания устойчивого горения Дуги при ручной дуге- вой сварке плавящимся электродом переменным током путем подачи на дугу в начале каждого полупериода (плюс на электроде) импульса напряжения. Стабилизируемый сварочный ток 80—800 А. Питание от сети переменного тока напряжением 220 В, частотой (50 5) Гц. Допустимые отклонения напряжения сети от номинального +10 и —15%, масса стабилизатора около 5 кг.  [c.41]

При сварке в аргоно-кислородной смеси (95 — 97% Аг и 5 — 3%0г) понижается так называемый критический ток, при котором электродный металл начинает переходить в сварочную ванну не в виде отдельных капель, а в виде конической струи. Кроме того, повышается плотность наплавленного металла и увеличивается скорость сварки. Применение аргоно-водородной смеси (85% Аг + +15% Нз) позволяет увеличить напряжение на дуге, повысить ее тепловую мощность и способствует повышению чистоты и плотности металла шва. Добавление к аргону углекислого газа (90% Аг + 10%С02) позволяет устранить пористость швов и повышает устойчивость горения дуги и улучшает формирование наплавленного металла. Аргоно-азотная смесь (80—70% Аг + 20—30% N2) применяется при сварке плавящимся электродом меди и ее сплавов.  [c.316]


Сущность процесса сварки в защитных газах неплавящимся и плавящимся электродами схематично показана на рис. 205, а, б. В первом случае электрическая дуга возбуждается между вольфрамовым или угольным электродом 2 и основным металлом 1 и горит в среде защитного газа 3. Для заполнения разделки в дугу подается присадочная проволока 4. При сварке плавящимся электродом электрическая дуга горит в среде защитного газа 3 между сварочной проволокой 4 и основным металлом /. Проволока подается механически с постоянной скоростью или с переменной, зависящей от напряжения дуги.  [c.318]

При автоматической сварке под флюсом плавящимся электродом проявляется эффект саморегулирования, заключающийся в том, что всякое изменение напряжения на дуге вызывает изменение силы тока и скорости плавления электродной проволоки в противоположном направлении, что ведет к восста-  [c.110]

Однако, несмотря на то что потенциал ионизации металлических паров и эффективный потенциал ионизации (/ имеют близкие значения, температура дуги, напряжение и стабильность горения при сварке плавящимся электродом существенно зависят от состава защитного газа (рис. 1.22).  [c.56]

Напряжения на дуге и сила тока при сварке плавящимся электродом в углекислом газе  [c.231]

Напряжение на дуге и сила тока при сварке плавящимся электродом в углекислом газе приведены в табл. 100.  [c.231]

При близких значениях тока и напряжения коэффициенты сосредоточенности открытых дуг близки по значению и находятся в пределах 1,0... 1,3, однако максимальная плотность теплового потока при сварке плавящимся электродом на 60...70 % больше, чем неплавящимся.  [c.18]

Стабилизаторы поддерживают устойчивое горение сварочной дуги при сварке на переменном токе плавящимся электродом путем подачи на дугу в начале каждого полупериода повышенного импульса напряжения, фактически повторно зажигающего дугу в моменты перехода тока через нулевое значение. Стабилизатор СД-2 (рис. 9.16) состоит из зарядного устройства ЗУ, конденсатора С, трансформатора тока ТА, контактора КМ и блока управления БУ. Конденсатор заряжается от зарядного устройства и в момент перехода сварочного тока через нулевое значение разряжается через дуговой промежуток Д, стабилизируя дуговой разряд. Стабилизатор представляет собой отдельный блок и подключается к вторичной обмотке сварочного трансформатора Т  [c.184]

Процесс сварки в среде аргона плавящимся электродом неустойчив, с трудом устанавливается стабильный струйный перенос металла в сварочной дуге. При сварке в среде азота эффективный и термический КПД дугового разряда выше, чем в среде аргона и гелия. При сварке в азоте или смеси азота с гелием силу тока уменьшают на 10... 15 %, а напряжение повышают на  [c.329]

При сварке плавящимся электродом, под действием высокой температуры, на его конце происходит плавление металла, образование капли, ее отрыв от электрода и перенос на металл изделия. При ручной сварке в виде капель переносится до 95% электродного металла, некоторая его часть превращается в пары и брызги (рис. 1.8). Диаметр капель и скорость их образования зависят от силы тока, диаметра электрода, длины дуги и ряда других условий. При сварке покрытыми электродами большинство капель окутано в оболочку из шлака, образующегося при плавлении покрытия, поэтому при прохождении они не замыкают дуговой промежуток. Однако короткое замыкание дугового промежутка некоторыми каплями все же происходит, что приводит к кратковременным падениям напряжения и скачкам сварочного тока. Для стабильности процесса горения дуги важна способность трансформатора к быстрому восстановлению тока и напряжения. В сварочной дуге происходит нелинейное распределение температуры и падение напряжения, зависящих от силы тока.  [c.12]


Основные параметры режима и техника сварки. К основным параметрам режима сварки плавящимся электродом относятся сила тока, полярность, напряжение дуги, диаметр и скорость подачи электродной проволоки, состав и расход защитного газа, вылет электрода, скорость сварки. Сварку плавящимся электродом обычно выполняют на обратной полярности. При прямой полярности скорость расплавления в 1,4—1,6 раза выше, чем при обратной, однако дуга горит менее стабильно с интенсивным разбрызгиванием. Сварочный ток, от которого зависят размеры шва и производительность сварки, зависит от диаметра и состава проволоки, его устанавливают в соответствии со скоростью подачи проволоки.  [c.86]

В ряде случаев при механизированной сварке плавящимся электродом удобнее пользоваться статической вольт-амперной характеристикой дуги, снятой не при постоянной ее длине, а при постоянной скорости подачи электродной проволоки (рис. 47). Из рисунка видно, что каждой скорости подачи электродной проволоки соответствует очень небольшой диапазон токов, в котором происходит устойчивое горение дуги. При этом очень небольшое изменение силы сварочного тока вызывает значительное изменение напряжения дуги. Слишком малый сварочный ток может привести к короткому замыканию электрода на изделие, а слишком большой - к резкому возрастанию напряжения дуги и к ее обрыву.  [c.85]

Наибольшее применение в ремонте машин получила наплавка в среде диоксида углерода плавящимся электродом. Используют электродные проволоки диаметром 0,8...2,0 мм и токи относительно большой плотности. Периферийная часть электрической дуги интенсивно охлаждается газом, поступающим из соплового наконечника, поэтому падение напряжения на единицу длины столба дуги будет в несколько раз выше, чем при дуговой сварке без подачи газа. Кроме того, сварка в диоксиде углерода ведется короткой дугой. В таких условиях дуговой разряд имеет возрастающую характеристику, а источник питания должен обладать слегка возрастающей или жесткой характеристикой для интенсификации процесса саморегулирования дуги. Для наплавки деталей применяют ток обратной полярности.  [c.293]

При сварке с присадочной проволокой последняя подается по гибкому направляющему каналу так, как это имеет место в шланговых полуавтоматах для плавящегося электрода. Проволока электрически изолирована от сварочного напряжения дуги. Скорость подачи присадочной проволоки выбирают в соответствии с ее диаметром и мощностью дуги. Поскольку проволока поступает в ванну по касательной к поверхности свариваемой детали, желательно режим сварки выбрать таким образом, чтобы скорость сварки и скорость подачи присадочной проволоки были равными. В этом случае оператор как бы опирается на конец подаваемой проволоки, контролируя при этом скорость движения горелки.  [c.185]

В автоматах для сварки плавящимся электродом с регуляторами типа АРНД естественные обратные связи, характерные для саморегулирования дуги, дополняются искусственной обратной связью по напряжению дуги. Статические ошибки Д/д и Дб/д при использовании регуляторов АРНД с воздействием на скорость подачи электродной проволоки зависят от коэффициента усиления регулятора  [c.102]

При автоматической сварке плавящимся электродом в среде защитных газов, когда применяются источники питания с жесткими характеристиками (область ///, см. рис. 1.37), типичными являются возмущения по вылету электрода, приводящие к статическим ошибкам по силе тока дуги. Для стабилизации вылета (расстояния между токоподводом и изделием) могут использоваться механические системы копирования с "плавающей" сварочной головкой или мундштуком либо электромеханические программные устройства, обеспечивающие подъем головки на заранее установленную величину по мере заполнения разделки при многопроходной сварке. Отсутствие в таких системах обратных связей по фактическому значению вылета электрода и электрическим параметрам дуги делает их нечувствительными к изменениям вылета вследствие колебаний напряжения дуги, скорости плавления электрода.  [c.104]

Температура дуги зависит от силы тока, приходящейся на единицу площади поперечного сечения электрода, — плотности тока. Чем она больше, тем выше температура дуги. При ручной дуговой сварке плавящимся электродом плотность тока от 10 до 20 А/мм и напряжение 18...20 В.  [c.70]

Техника сварки плавящимся электродом, В зависимости от свариваемого материала, его толщины и требований, предъявляемых к сварному соединению, в качестве защитных газов используют инертные, активные газы или смеси защитных газов (см. табл. Х1.1). Ввиду более высокой стабильности дуги применяется преимущественно постоянный ток обратной полярности от источников с жесткой внешней характеристикой. Помимо параметров режима на стабильность горения дуги, форму и размеры шва большое влияние оказывает характер расплавления и переноса электродного металла в сварочную ванну. Характер переноса электродного металла зависит от материала и диаметра электрода, состава защитного газа и ряда других факторов. Рассматривая процесс сварки в углекислом газе, можно отметить, что при малых диаметрах электродных проволок (до 1,6 мм) и небольших сварочных токах при короткой дуге с напряжением до 22 В процесс идет с периодическими короткими замыканиями, во время которых электродный металл переходит в сварочную ванну. Частота замыканий достигает 450 в 1 с. При этом потери на разбрызгивание обычно не превышают 8% (область А на рис. XI.15). При значительном возрастании сварочного тока и увеличении диаметра электрода (область В на рис. XI.15) процесс идет при длинной дуге с образованием крупных капель без коротких замыканий. Область Б является переходной, в которой возможно появление крупных капель и их переход с короткими замыканиями и без них. При сварке на режимах областей Б к В обычно ухудшаются технологические свойства дуги и, в частности, затрудняется переход электродного мета.пла в сварочную ванну при сварке в потолочном положении. Дуга недостаточно стабильна, а разбрызгивание повышено.  [c.311]


Влияние газовой среды. Для сварки находят применение дуги с плавящимся и неплавящимся электродами, горящие в среде или в струе защитных газов Аг, Не, СОг и др. Эти газы влияют на состав плазмы столба и, следовательно, на ее о, Qe, -от которых зависят температуры столба, напряженность и плотность тока в нем [см. формулы (2.59), (2.62), (2.63)]. При малых скоростях и ламинарном течении струи газов вносимые ею изменения незначительны. Например, для сварки плавящимся электродом свойства столба при 1 атм могут определяться потоками паров электродов и мало зависеть от состава защитной атмосферы. Тогда в расчет вводятся константы щ, Qe, а для паров электродов. Опыты Лескова Г. И. показали, что обдувание Ме-дуги при / = 200 а струей аргона, углекислого газа или воздуха при. малой скорости течения (около 1 м/сек) практически не изменило ее характеристики. Однако в вакууме и в парах воды Е меняется значительно от 2 в/см в первом случае до 80 в/см — во втором.  [c.75]

Процесс сварки плавящимся электродом сопровождается частыми замыканиями дугового промежутка, вызываемыми переходом капель расплавленного металла с электрода на изделие. В связи с этим приобретают особое значение динамические свойства источников питания, т. е. обеспечение быстрого нарастания напряжения и силы тока в дуге при изменении режима.  [c.65]

Подавляющее больщинство источников питания, выпускаемых в СССР, имеет общее назначение как для однодуговой ручной сварки плавящимся электродом открытой дугой, так и для автоматической сварки под флюсом. В соответствии с большим разнообразием режимов сварки источники питания выпускаются различной мощности, регламентируемой ГОСТ. Каждый источник питания рассчитывается на определенное номинальное рабочее напряжение и соответствующий номинальный ток при заданной относительной продолжительности работы (ПР) или относительной продолжительности включения (ПВ) в прерывистом режиме.  [c.56]

Листы из алюминиевого сплава АМц средних толщин (8 мм и выше) подвергают автоматической и полуавтоматической сварке по флюсу плавящимся электродом из проволоки АМц. Диаметр проволоки равен 2,5—3,5 мм, применяется флюс состава № 1 (см. табл. 53). Высота слоя флюса должна равняться 10—35 жл. Сварка ведется на постоянном токе при обратной полярности. Берется ток 320—440 а, напряжение дуги 38—44 в, скорость сварки 12—20 м/час, вылет электрода 25—45 мм. За один проход обеспечивается проплавление листов на 2/3 их толщины. Сварка производится с двух сторон, по одному проходу с каждой стороны. Первый шов сваривается на стальной подкладке, плотно прижатой с помощью сварочного приспособления к свариваемым листам. Листы собирают с зазором не более 2 мм и укладывают при сварке горизонтально или с наклоном не более 15 мм на 1 м.  [c.271]

Сварка в инертных газах. В качестве защитной среды при сварке используются аргон, гелий, диоксид углерода (углекислый газ), кислород и их смеси (табл. 1.10). Из инертных газов преимущественно используется аргон и реже гелий, вследствие его высокой стоимости. Аргон, гелий и их смеси применяются главным образом при сварке неплавящимся (вольфрамовым) электродом. Аргон обеспечивает при сварке неплавя-щимся электродом хорошее формирование швов. Гелий в сравнении с аргоном обеспечивает лучшую устойчивость горения дуги, ббльшую глубину проплавления основного металла и, кроме того, хороший перенос металла через дугу при сварке плавящимся электродом вследствие более высокого падения напряжения на дуге.  [c.52]

Для сварки тптана может быть использовано стандартное сварочное оборудование, снабженное дополнительными устройствами для защиты зоны сварки, а также специализированные сварочные горелкп и головки. В качестве инертных газов применяют аргон чистый марок А и Б ио ГОСТу 10157—62 и гелий высокой чистоты по ВЧ МРТУ 51-04-65. Для защиты зоны дуги и расплавленной ванны необходимо пспользовать аргон состава А. Для защиты остывающей части шва и обратной стороны шва неответственных изделий допускается применять аргон состава Б. Гелий и его смеси с аргоном целесообразно использовать при дуговой сварке плавящимся электродом лпстов большой толщины (8—10 мм). При сварке в гелии необходимый для защиты сварочной ванны расход газа в 2—3 раза, напряжение на дуге в 1,4—1,6 раза и ширина зоны расплавления в 1,4 больше, чем при сварке в аргоне.  [c.355]

Рассмотрим возрастающую часть кривой V=f(I). За последние годы все более широкое распространение получает сварка под флюсом и в среде защитных газов с применением тонких электродов при высоких плотностях тока. При таких режимах сварки активное пятно, расположенное на тонком плавящемся электроде, находится в сжатом состоянии и занимает весь торец проволоки, в результате чего увеличение тока сопровождается повышением плотности тока и падения апряжения. Кроме того, столб дуги, имеющий при небольших плотностях тока цилиндрическую форму, при сварке тонкой проволокой с повышенной плотностью тока, принимает форму конуса, обусловленную размерами сжатого активного пятна. Это явление сопровождается повышением падения напряжения в столбе дуги. При сварке под флюсом плотность тока в столбе дуги пдвышается также и в результате давления, оказываемого жидким флюсом на газовую полость, которая образуется парами металла и компо нен-  [c.8]

Стабилизатор сварочной дуги. Для повышения производительности ручной дуговой сварки и экономичного использования электроэнергии создан стабилизатор сварочной дуги СД-2. Стабилизатор поддерживает устойчивое горение сварочной дуги при сварке переменным током плавящимся электродом путем подачи на. у в начале каждого периода импульса напряжения. Стао илизатор расширяет технологические возможности сварочного трансформатора и позволяет вьшолнять сварку на переменном токе электродами УОНИ, ручную дуговую сварку неплавящимся электродом изделий из легированных сталей и алюминиевых сплавов.  [c.139]

При сварке плавящимся электродом особое значение имеет закономерность переноса капель жидкого металла с электрода в сварочную ванну. Размер капель расплавленного металла, переходящего с электрода в сварочную ванну, зависит от нлотности сварочного тока и напряжения дуги. При увеличении плотности сварочного тока прсисхвдит умеиьшеыне размера капель жидкого металла, а их число увеличивается. При повышении напряжения дуги размер капель жидкого металла увеличивается, а их число уменьшается. Для уменьшения разбрызгивания, металла при дуговой сварке плавящимся электродом сварку проводят на повышенных плотностях сварочного тока при относительно малых значениях напряжения дуги или применяют импульсный режим сварки.  [c.6]

Для сварки неплавящимся электродом применяют в основном инертные газы Аг и Не, а также их смеси в любом соотнощении. Эти газы, особенно Не, обладают высокими потенциалами ионизации, что затрудняет первоначальное возбуждение дуги. Однако напряженность электрического поля в столбе дуги в инертных газах имеет сравнительно низкое значение, и поэтому дуговой разряд в инертных газах отлриается высокой стабильностью. При сварке плавящимся электродом напряжение дуги и ее стабильность существенно зависят от состава защитного газа (рис. 7.3). Увеличение концентрации молекулярных газов (Н2, N2, О2 и СО2) в составе защитной среды аргона приводит к повыщению напряжения дуги, что объясняют интенсивным охлаждающим действием этих газов в связи с высокой теплопроводностью и затратами энергии на диссоциацию. Увеличение напряжения дуги снижает ее устойчивость.  [c.114]


Автомат типа АРК-1 предназначен для сварки прямолинейных швов. При сварке плавящимся электродом сварочная головка имеет постоянную, ие зависящую от напряжения дуги, скорость подачи электродной проволоки. Сварка может производиться электродной проволокой диаметром 1,0—2,5 мм на токах до 500а. Автомат отличается высокой производительностью, может обслуживать несколько рабочих мест, удобен в работе, однако громоздок.  [c.32]

Для сварки находят применение дуги с плавящимся и иепла-вящимся электродами, горящие в среде или в струе защитных газов Аг, Не, Oj и др. Эти газы влияют на состав плазмы столба и, следовательно, на ее параметры Uo, Qe, от которых зависят температура столба, напряженность и плотность тока в нем. При малых скоростях и ламинарном течении струи газов вносимые ею изменения незначительны. Например, для сварки плавящимся электродом свойства столба при атмосферном дав-  [c.59]

Механизированную дуговую сварку под флюсом осуществляют угольным (фафитовым) электродом (рис, 12.4) и плавящимся электродом. Сварка угольным электродом выполняется на постоянном токе прямой полярности с использованием стандартных флюсов АН-348А, ОСЦ-45, АН-20. При сварке угольным электродом кромки 1 собирают на графитовой подкладке 2, поверх стыка накладывают полоску латуни 3, которая служит присадочным металлом. Дуга горит между угольным электродом 4, заточенным в виде плоской лопаточки, и изделием под слоем флюса 5. Способ пригоден для сварки толщин до 10 мм. Диаметр электрода до 18 мм, сила тока до 1000 А, напряжение дуги 18. .. 21 В, скорость сварки 6. .. 25 м/ч.  [c.460]

Эффективный потенциал ионизации 7, и катодное падение напряжения С/к в значительной степени зависят от наличия в дуговой полости элементов-ионизаторов. Так, например, по данным Д. М. Рабкина, при сварке стальным плавящимся электродом открытой незащищенной дугой, в полости которой присутствуют только пары железа, i/i = 7,83 в, i7k=17,0 0,5 в при наличии в зоне дуги кальция без фтор-ионов /, = 6,11 в и i/k=13,0 0,5 в, а при наличии калия 7, = 4,32 в и i/k=12,5 0,5 в. Подобно указанному выше активированию вольфрамового катода действует на стабильность процесса и плавление стального электрода-катода добавка к аргону кислорода. Кроме того, несмотря на то, что потенциалы ионизации аргона и гелия достаточно высокие и составляют для первого 15,7 в, а для второго 24,5 в, применение электрических стабилизаторов намного снижает эти значения. По литературным данным, приводимым на основании опытов по сварке нержавеющей стали на прямой полярности, минимальное общее напряжение вольфрамовой дуги, горящей в аргоне, составляет 8 в, а дуги, горящей в гелии (при том же токе),— 12,5 в. Учитывая, что анодное падение I7a 2,5 в, получим катодное падение напряжения. для дуги, горящей в аргоне, составляет 5,5 в, а для дуги, горящей в гелии, — 10 в. В этих условиях как при вольфрамовом, так и при плавящемся стальном электроде выделение тепла на аноде обычно несколько больше, чем на катоде, и при обратной полярности (анод на электроде) стальной электрод плавится быстрее, чем при прямой (катод на электроде). Как уже отмечалось, особенно сильно при этом снижается нагрев катода при вiвeдeнии в полость дуги паров веществ с низким потенциалом ионизации, причиной чего является снижение  [c.20]

Для подводных работ пока удалось использовать только дуговую сварку. плавящимся электродом. Возможна сварка и неплавящимся электродом. Дуговую сварку под водой впервые разработал К. К. Хренов в 1932 г. Способ основан на открытии, что дуга, несмотря на интенсивное охлаждающее действие окружающей воды, нагревает и плавит металл практически столь же легко, как и на воздухе. При соблюдении несложных дополнительных условий дуга горит в воде вполне устойчиво при питании от обычных источников постоянного или переменного тока, применяемых для работ на воздухе. Как правило, используют постоянный ток. Дуга горит в газовом пузыре, образуемом и непрерывно возобновляемом в результате испарения и разложения воды. Устойчивое горение дуги под водой можно объяснить принципом минимума энергии Штеенбека или саморегулированием дуги. Если усилить охлаждение какого-либо участка дуги, то выделение энергии на нем увеличится и компенсирует усиленное охлаждение. У сварочной дуги под водой напряжение на 6—7 В больше, чем на воздухе, этот избыток напряжения компенсирует охлаждающее действие воды.  [c.684]

На рис. 20 представлена схема аргоно-дуговой сварки труб которая осуществляется электрической дугой, возникающей между Н0плавя1щим.оя вольфрамо1Вым электродом 2, находящимся в среде аргона, и металлом трубы аргон предохраняет плавящийся металл трубы от окисления. Кромки трубной заготовки 1 разогреваются до сварочной температуры электрической дугой при действии постоянного тока напряжением до 20 В  [c.36]


Смотреть страницы где упоминается термин Напряжение на дуге при сварке плавящимся : [c.57]    [c.111]    [c.159]    [c.32]    [c.141]    [c.326]    [c.36]    [c.302]   
Справочник по специальным работам (1962) -- [ c.0 ]



ПОИСК



Вес дуги

Напряжение дуги

О плавающие

Сварка Напряжение дуги



© 2025 Mash-xxl.info Реклама на сайте