Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Бельтрами Мичелла перемещениях

Уравнения Бельтрами — Мичелла можно вывести и другим путем, принимая за исходную позицию уравнения в перемещениях. Такой способ обоснован тем, что в этих уравнениях уравнения совместности удовлетворяются тождественно ). Продифференцируем уравнения в перемещениях  [c.120]

Уравнения Бельтрами — Мичелла завершают полную систему уравнений теории упругости, позволяющую решать необходимые задачи в перемещениях или в напряжениях.  [c.131]


Исключение деформаций и напряжений позволяет получить три дифференциальных уравнения лишь относительно перемещений (уравнения Навье). Преимущество этого подхода состоит в том, что условия совместности при этом не нужны. С другой стороны, исключение деформаций и перемещений при использовании условий совместности приводит к шести дифференциальным уравнениям лишь относительно напряжений (уравнениям Бельтрами—Мичелла). Полученные таким образом уравнения Навье и соответственно Бельтрами—Мичелла часто называют также основными уравнениями теории упругости.  [c.66]

В линейной теории упругости, напомним, распространен вариант полуобратного метода, в котором исходным этапом служит задание статически возможного, иначе говоря, удовлетворяющего уравнениям статики в объеме и на поверхности, напряженного состояния. Далее проверяется, что это состояние согласуется с уравнениями Бельтрами — Мичелла этим гарантируется, что линейный тензор деформации, вычисляемый по принятому тензору напряжений, допускает определение вектора перемещения и. Перенесение этого приема в нелинейную теорию затруднено тем, что обращение уравнения состояния — разыскание меры деформации по тензору напряжений из нелинейного уравнения состояния практически неосуществимо (И, 8) и неоднозначно. Аналог уравнений Бельтрами —Мичелла в нелинейной теории может быть использован лишь в исключительных случаях ( 17). Поэтому вторым вариантом полуобратного метода здесь может служить исходное задание меры деформации, удовлетворяющее условиям обращения в нуль тензора Риччи (П1.10.21). По этой мере и по уравнению состояния составляется тензор напряжений. Он должен быть статически возможным его дивергенция должна быть нулем, если не учитываются массовые силы, а по его произведению на вектор нормали определяются поверхностные силы. Конечно, нет оснований ожидать, что такая процедура не потребует при выполнении уравнений статики в объеме конкретизации задания коэффициентов определяющего уравнения, как функций инвариантов меры деформаций (скажем, коэффициентов фг(/1, 2, /з) в (4.3.4)). Значит и формы представления поверхностных сил зависят от выражений этих коэффициентов, иначе говоря, их нельзя представить в единой записи, независящей от того, какой принят закон зависимости удельной потенциальной энергии э(/,, /2, /3) от ее аргументов.  [c.135]


Это—аналог уравнения совместности напряжений линейной теории-уравнений Бельтрами —Мичелла. Известно, что принцип минимума дополнительной работы в этой теории выделяет из множества статически возможных напряженных состояний реализуемое состояние, допускающее определение вектора перемещения. Естественно ожидать, что принципу стационарности дополнительной работы в нелинейной теории отводится та же роль ).  [c.143]

Будем считать, что узловые усилия заданы и по ним требуется определить узловые перемещения из второго матричного уравнения (4.46), которое представляет собой, вообще говоря, переопределенную систему линейных алгебраических уравнений относительно узловых перемещений. Так, для стержневых систем, которые носят название статически неопределимых, матрица является прямоугольной и число строк в ней меньше числа столбцов. Поэтому указанная система может допускать решение только при условии ее совместности. Уравнения (4.50) или (4.51) являются условиями совместности системы (4.46). Действительно, они получены заданием решения системы (4.46) в форме (4.49), подстановкой его в (4,46) и требованием, чтобы система (4.46) допускала решение (4.49),удовлетворяющее уравнениям равновесия узлов. Уравнения (4.50) и (4.51) являются аналогом известных уравнений Бельтрами — Мичелла в теории упругости.  [c.81]

При использовании деформационной теории, согласно которой связь между напряжениями и деформациями является конечной нелинейной, полная система уравнений может быть приведена к разрешающим уравнениям в перемещениях или напряжениях, аналогичным уравнениям Ламе или Бельтрами — Мичелла в теории упругости. Для решения конкретных задач с успехом применяются различные варианты метода последовательных приближений. Возможна, например, следующая схема этого метода (метод дополнительных нагрузок). Напряжения, выраженные через деформации по формуле (10.15)  [c.745]

Пусть, наконец, основные уравнения в перемещениях или в напряжениях задаются соответственно в форме уравнений Навье или Бельтрами — Мичелла. Они запишутся в виде  [c.193]

В соответствующей форме можно представить также уравнения Навье относительно перемещений Ыг и Ыф и уравнения Бельтрами— Мичелла для компонент напряжений Огг, сГфф и Тгф (однако более подробно это обсуждаться здесь не будет).  [c.197]

М. Гуртин и Е. Штернберг [2041 установили для теории ползучести изотропных тел аналоги уравнений равновесия в перемещениях (уравнений Ляме), уравнений сплошности в напряжениях (уравнений Бельтрами—Мичелла), теоремы взаимности работ (теоремы Бетти), а также аналоги общего решения однородных уравнений в форме Б. Г. Галеркина и П. Ф. Папковича. Аналог уравнений Бельтрами—Мичелла использовался раньше также Н. X. Арутюняном [7]. Упомянутые выше уравнения, как отмечено в [238], могут быть формально получены из соответствующих уравнений теории упругости с помощью принципа 20  [c.20]

ВИЯМ (4.6). Далее по полученным функциям aij (Xk) находятся функции ги (Xh) из алгебраических уравнений (4.5) закона Гука. Так как при нахождении функций atjixii) удовлетворялись условия совместности Бельтрами—Мичелла, то функции etj (xj будут удовлетворять дифференциальным зависимостям Сен-Венана, т. е. необходимым и достаточным условиям интегрируемости уравнений (4.1). Тогда путем интегрирования уравнений (4.1) определяются перемещения щ (х ).  [c.81]

Существенное внимание уделяется общим методам решения проблем теории упругости. При рассмотрении дифференциальных уравнений Навье в перемещениях вводятся векторный и скалярный потенциалы, потенциал Ламе, вектор Буссинеска, вектор Папковича. Анализируя дифференциальные уравнения в напряжениях Бельтрами — Мичелла, автор вводит функции напряжений Максвелла и Мореры. Подробно показано применение обратного и полуобратного методов Сен-Венана.  [c.6]


ВИЯМ (4.6). Далее по полученным функциям ш/ (хн) находятся функции ец (хн) нз алгебраических уравнений (4.5) закона Гука. Так ка1 при нахождении функций ог/ (д ) удовлетворялись условия совмесг ности Бельтрами—Мичелла, то функции Е / (х ) будут удовлетворят дифференциальным зависимостям Сеи-Венана, т. е. необходимым I достаточным условиям интегрируемости уравнений (4.1). Тогда путе интегрирования уравнений (4.1) определяются перемещения г х ).  [c.80]


Теория упругости (1975) -- [ c.479 ]



ПОИСК



Бельтрами

Уравнение Бельтрами

Уравнение перемещений

Уравнения Бельтрами—Мичелла



© 2025 Mash-xxl.info Реклама на сайте