Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проводимость анионная

Продукты химической коррозии металлов — окисные и солевые пленки — имеют ионную структуру. В отличие от жидких электролитов с ионной проводимостью (л + а = 1) ионные кристаллы обладают различными типами проводимости ионной (п + 3 = 1), электронной ( э = 1) и смешанной (п + а + + э = 1) проводимостью (табл. 5) здесь п , и — числа переноса катионов, анионов и электронов соответственно. Если в общем случае = I, то число переноса электронов  [c.34]


Разупорядочение ионных кристаллов происходит преимущественно в той подрешетке, ионы которой обладают меньшим радиусом, более низкой валентностью и меньшей деформируемостью. Разные типы разупорядоченности иногда могут переходить один в другой при повышении или понижении температуры. Так, РЫа ввиду большой поляризуемости ионов I при низких температурах обладает катионной проводимостью, в то время как анионная проводимость становится значительной только в области более высоких температур.  [c.38]

Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку.  [c.87]

В некоторых диэлектриках доминирующей является ионная проводимость, при которой ток переносится положительными (катионы) или отрицательными (анионы) ионами. При этом в постоянном электрическом поле осуществляется не только перенос заряда, но и перенос вещества. Анионы движутся к аноду, катионы — к катоду. Поскольку концентрация носителей заряда в объеме диэлектрика в этом случае постепенно уменьшается, значение ионного тока зависит от времени.  [c.274]

В любом атоме существует ряд энергетических уровней. Нижние из них заполнены электронами, более высокие не заполнены, но могут принимать электроны с нижних уровней при возбуждении атома. Каждому из уровней электронов в решетке кристалла соответствует энергетическая зона. Одни зоны кристалла образуются путем уширения уровней катионов, другие — уровней анионов. При этом каждая из образующихся зон служит обобществленным уровнем всех катионов или всех анионов кристалла. Наиболее важной парой зон, определяющей основные электрические и оптические свойства кристалла, является самая высокая из заполненных зон, обычно образованная уровнями аниона основного вещества валентная зона), и самая низкая из незаполненных зон, состоящая из уровней его катиона зона проводимости). Зазор между этими зонами соответствует тем значениям энергии, которые электрон не может получить в решетке кристалла. Поэтому расстояние между валентной зоной и зоной проводимости называется запрещенной зоной (рис. 70).  [c.183]


При ионной проводимости наблюдается разложение вещества на ноны, перенос их и образование новых химических веществ на электродах. Количество перенесенного вещества пропорционально количеству ионов, прошедших через диэлектрик, и находится в полном соответ-ств ии с законом Фарадея. Общая проводимость равна сумме анионной и катионной проводимости. Общее количество электричества эквивалентно количеству осажденных на электродах химических веществ, которое называется числом переноса и наблюдается как у жидких, так. и у твердых диэлектриков.  [c.17]

Если окалина является п-проводником или проводником ионного типа с диффузией катионов по вакансиям или анионов в междоузлиях, то добавка катионов с более высокой валентностью к окалине снижает скорость окисления. Аналогичное снижение происходит, когда окалина является р-проводником или проводником ионного типа с диффузией анионов по вакансиям или катионов по междоузлиям с добавкой катионов с более низкой валентностью по отношению к окалине. В условиях, когда валентности обоих металлов равны, замена катионов основного металла катионами добавки не должна существенно влиять на интенсивность окисления. Эти правила, конечно, действительны при осуществлении объемной диффузии и теряют свою значимость, если превалирует диффузия по границам зерен или по поверхности. Если образующийся на поверхности металла оксид состоит из двух частей, соответственно с п- и р-проводимостью (например, при окислении  [c.64]

Рост пленок с электронной проводимостью за счет диффузии анионов по анионным вакансиям кристаллической решетки в направлении к поверхности металла. Рост пленки происходит на границе металл—оксид. Примером служат а-Ре Од, TiO , ZrO .  [c.20]

Пятиокись ниобия (Nb Os) является полупроводником п типа с недостатком анионов (т.е. кислорода) в кристаллической решетке. Элемент с более высокой валентностью, например Мо, должен снижать проводимость окисной пленки, так как для сохранения нейтральности окисла количество вакантных мест в решетке должно уменьшаться (что равнозначно уменьшению отношения Me О). Введение элементов с меньшей валентностью (Ti, Zr) приводит к увеличению отношения Me О, т.е. число дефектных мест в решетке и проводимость сплава при этом будут возрастать.  [c.73]

Для окислов с вакансиями в анионной подрешетке будем иметь электронную проводимость и перенос анионов лп вакансиям анионной подрешетки, т. е.  [c.123]

Удельная электрическая проводимость измеряется в сименсах на метр (100 См/м = 1 Ом см ) и определяется в расплавах движением наиболее подвижных частиц. Такими частицами являются катионы, имеющие меньшие размеры, чем анионы. Температурная зависимость электрической проводимости аналогична зависимости вязкости от температуры и определяется выражением  [c.77]

В отличие от нитридов -металлов, где некомплектность азотной подрешетки может достигать -50 % (обзоры в [20,21]), области гомогенности бинарных Ш-нитридов в равновесном состоянии весьма малы [1, 3]. Тем не менее, даже незначительное присутствие решеточных анионных или катионных вакансий может критическим образом изменять проводимость, оптические свойства, влиять на термомеханические характеристики Ш-нитридов. Особую роль решеточные дефекты играют в формировании свойств элементов оптоэлектронных устройств, в качестве которых выступают нитридные пленки или гетероструктуры, синтезируемые в неравновесных условиях.  [c.38]

Приведенные результаты свидетельствуют, что решеточные вакансии нельзя рассматривать как точечные дефекты их присутствие вызывает возмущение электронных состояний кристалла, достигающее, по крайней мере, второй координационной сферы вакансии. По своему действию на электронные состояния матрицы катионная вакансия (Уд) будет выступать как акцепторная примесь , анионная (У ,) — как донорная примесь , инициируя возникновение проводимости дырочного и электронного типов, соответственно.  [c.40]

Области активного растворения железа и области пассивации отвечают отрицательные значения ф.э.п. Это, согласно (1,25), указывает на то, что поверхностные окислы, существующие на железе в области активного растворения и в области пассивации, обладают проводимостью преимущественно электронного типа и содержат избыточные против стехиометрии атомы железа. Поскольку для окислов железа характерна разупорядоченность за счет анионных вакансий, поверхностный окисел в области пассивации железа отвечает общей формуле разупорядоченности  [c.21]


Механизм, который предложили Кабрера и Мотт (J949 г.), исходит и из существования на металле образовавшейся в процессе хемосорбции кислорода пленки, в которой ионы и электроны движутся независимо друг от друга. При низких температурах диффузия ионов через пленку затруднена, в то время как электроны могут проходить через тонкий еще слой окисла либо благодаря термоионной эмиссии, либо, что более вероятно, вследствие туннельного эффекта (квантово-механического процесса, при котором для электронов с максимальной энергией, меньшей, чем это требуется для преодоления барьера, все же характерна конечная вероятность того, что они преодолеют этот барьер, т. е. пленку), обусловливающего высокую проводимость окисной пленки при низких температурах. При этом на поверхности раздела металл— окисел образуются катионы, и на поверхности раздела окисел— газ—анионы кислорода (или другого окислителя). Таким образом, внутри окисной пленки создается сильное электрическое поле, благодаря которому главным образом ионы и проникают через пленку, скорость роста которой определяется более медленным, т. е. более заторможенным, процессом.  [c.48]

Так как коррозионные процессы в большинстве случаев протекают по электрохимическому механизму, то большое значение для этих процессов имеют свойства растворов электролитов. Электролитами называются проводники второго рода, электропроводность которых обусловлена передвижением ионов в электрическом поле (ионная проводимость) положительно заряженных катионов и отрицательно заряженных анионов. Проводниками второго рода обычно являются водные растворы солей, кислот и оснований, а также эти вещества в расплавленном состоянии. Электролитами могут быть и некоторые неводные растворы. Наряду с сильными электролитами, полностью диссоциирующими в растворах на ионы, некоторые вещества, например органические кислоты, лишь частично распадаются на ионы их принято называть слабыми электролитами.  [c.11]

Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции + + 2ё Ti составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует TiOj. Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Ti , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией.  [c.372]

На скорость и направление электроосмотического переноса влаги через мембрану (покрытие) оказывает влияние знак электрического заряда на стенках капилляра пленки. Электроосмотическая активность пленки снижается с уменьшением величины заряда. На защитное действие покрытия оказывает влияние ионная провохщмость полимерной пленки, которая зависит от свойства и структуры полимера. Наличиа преимущественно катионной проводимости свидетельствует об отрицательном заряде, а анионной проводимости — о положительном заряде пленки.  [c.128]

Предельная молярная электрическая проводимость Ло, коаффициенгп диффузии D и скорость двилсения анионов фосфорной кислоты w при 25 °С U55 ]  [c.178]

Во втором варианте создаются твердые электролиты с нужными свойствами. Некоторые окислы из-за особенностей их кристаллической структуры при высоких температурах обладают очень хорошей анионной проводимостью. Это явление известно уже более 80 лет. Смесь, состоящая из 85 % ZrOg и 15 % Y2O3, изучается начиная примерно с 1900 г. Точный механизм увеличения анионной проводимости стал ясен лишь в последнее время. Это позволило получить кристаллическую структуру бета-глинозема. С помощью рентгеноструктурного анализа было установлено, что кристаллическая структура бета-глинозема представляет собой отдельные кристаллические площадки, слабо связанные друг с другом, как в графите. Зазоры между кристаллическими площадками, по-видимому, обеспечивают свободное перемещение ионов щелочного металла внутри кристалла. Проводимость возрастает, если в глиноземе имеется примесь щелочного металла, например натрия. Атомы натрия располагаются, в промежутках между  [c.91]

Наличие преимущественной катионной проводимости у полимерных покрытий делает их чувствительными к электроосмо-тическому переносу воды. Последний тем выше, чем больше избирательная проводимость ионов данного вида, т. е. чем больше числа переноса катиона или аниона отличаются от 0,5. Для исследования электроосмоса был использован прибор, приведенный на рис. 7.8.  [c.123]

Перенос электричества в стекле осуществляется преимущественно ионами (ионная проводимость), вернее катионами (анионы малоподвижны даже при высоких температурах). Специальные виды полупроводниковых стекол (халькогейидных или ванадиевых) обладают электронной или смешанной проводимостью. Удельная объемная электропроводность стекла зависит от подвижности его ионов и поэтому при невысоких температурах (до 200° С) незначительна, в связи с чем многие стекла (кварцевое, боросиликатное, малощелочное 13в и др.) являются хорошими диэлектриками и служат в качестве высоковольтных изоляторов. i  [c.455]


Удельная электрическая проводимость Н-катиониро-ванной пробы конденсата турбины, обессоленного конденсата и питательной воды на блоках СКД практически обусловливается концентрацией ионов натрия и кальция и эквивалентным им содержанием анионов С1  [c.116]

Механизмы пореиоса заряда И. с. многообразны. Проводимость может быть собственной или примесной, чисто ионной, вакансионной или смешанной. Чаще всего она осуществляется нонами малого радиуса элементов первой группы периодич. систелы (Н , Li" , Na , Ag и др.), а также катионами с большим зарядом (Са , Nd ), анионами (Fe , 0 ), кластерными ионами (NH4, 0Н ). Катионные проводники более расиро-страиены и важны ввиду больших значений о при темп-рах Г 300 К.  [c.206]

Помимо разделения Э. т. на переменные токи и постоянные токи, до нек-рой степени условно различают токи проводимости и конвекционные токи. К первым относят Э.т. в проводящих средах, где носители заряда (электроны, ионы, дырки в проводниках и полупроводниках, анионы и катионы в электролитах) перемещаются сами или эстафетно передают один другому импульсы внутри неподвижных макросред, испытывая индивидуальные или коллективные соударения с формирующими эти среды частицами (нейтралами, ионными решётками и т. п.). Для компенсации потерь и обеспечения протекания Э.т. (за исключением Э.т, в сверхпроводниках) необходимо прикладывать сторонние силы—обычно электрич. поле Е. При достаточно малых Е почти всегда справедлива линейная связь между J и Е (Ома закон) для линейных однородных изотропных сред j=aE, ст = onst. В общем случае электропроводность и может зависеть от координат (неоднородные среды), направлений (анизотропные среды), внеш. магн. поля, изменяться со временем (парамет-рич. среды) и т. п. С увеличением напряжённости Е электропроводность любой среды становится нелинейной о=а Е). Напр., под действием поля Е даже в исходно нейтральных (непроводящих) газах может возникать лавинно возрастающая ионизация — пробой (см. Лавина электронная) с прохождением иногда весьма значительных Э.т. В естественных земных условиях разряды в грозовых облаках характеризуются Э.т. до 10 А. Обычно это достигается в гл, стадии молнии, называемой обратным ударом, когда основной лидер заканчивает прокладку проводящего тракта до самой Земли.  [c.515]

Применение изделий из ZrO - Анионный характер проводимости твердых растворов 2гОг позволяет использовать его в качестве твердых электролитов для работы при высоких температурах. Одна из областей применения — это топливные элементы, в которых температура развивается до 1000—1200°С. Керамика из ZrOg служит токосъемным элементом в таких высокотемпературных химических источниках тока. Твердые электролиты из ZrO используются и в других источниках тока, в частности он перспективен для применения в МГД-генераторах. В стране разработаны я применяются высокотемпературные нагреватели из ZrOg для разогрева в печах до 2200"С. На воздухе изделия из диоксида циркония применяют при высокотемпературных плавках ряда металлов и сплавов. Практически полное отсутствие смачиваемости ZrO сталью и низкая теплопроводность привели к успешному использованию его для футеровки сталеразливочных ковшей и различных огнеупорных деталей в процессе непрерывной разливки стали. В некоторых случаях диоксид циркония применяют для нанесения защитных обмазок на корундовый или высокоглиноземистый огнеупор. Диоксид циркония широко используют с целью изготовления тиглей для плавки платины, титана, родия,  [c.127]

Резко отличаются электронные состояния примеси (81), помещаемой в узлы анионной или катионной подрешетки к-ВЫ, рис. 2.6. Если при замещении 81 —> В примесные состояния существенно делокализованы и примешиваются в основном к дну ЗП кристалла, инициируя электронную проводимость в допированной системе, то при замещении по типу 81 —> В примесные состояния образуют узкие локальные уровни в области запрещенной щели матрицы. Эти состояния частично заняты и расположены на -1,0 эВ ниже дна ЗП. Электроны, заселяющие примесные уровни,  [c.44]

Наложение на мембрану постоянного электрического поля вызывает направленное движение противоионов (электромиграцию). Поэтому набухшая в воде или растворе идеальная мембрана является полиэлектролитом с униполярной проводимостью в отличии от растворов электролитов, в которых ток переносят и катионы, и анионы.  [c.575]

В 1964 г. фирмой Дюпон впервые бьш получен патент на изготовление гомогенных сульфокатионитовых мембран на основе фтор-углеродной матрицы, широко известных под торговой маркой Nafion [18, 40]. Мембрана Nafion относится к твердым полимерным электролитам (ТПЭ) - веществам, имеющим полимерное строение, в состав которых входят функциональные фуппы, способные к диссоциации с образованием катионов или анионов, направленное движение которых внутри структуры полимера обусловливает его ионную проводимость. Аналогичные ТПЭ стали выпускаться в России под названием МФ-4СК.  [c.576]

Эти результаты находятся в соответствии с данными об электронной проводимости массивных образцов FeO, Fea04 и v-Fe203 за счет избыточного железа в решетке, полученными в обычных условиях по знаку эффекта Холла или термо-э.д. с. Из рис. 1,6 можно видеть, что при потенциалах активного растворения значение отрицательной ф. э.п. растет до потенциала пассивации (+0,45 В). Это указывает, согласно (1,25), на преимущественно катионный характер переноса в окисной фазе при этих потенциалах и на то, что активное растворение железа связано с увеличением отклонения от стехиометрического состава поверхностного окисла и ростом концентрации дефектов структуры — анионных вакансий (ионов Fe2+ и свободных электронов).  [c.21]


Смотреть страницы где упоминается термин Проводимость анионная : [c.304]    [c.36]    [c.38]    [c.39]    [c.39]    [c.376]    [c.213]    [c.145]    [c.14]    [c.276]    [c.108]    [c.466]    [c.17]    [c.150]    [c.552]    [c.535]    [c.19]    [c.19]    [c.428]    [c.33]    [c.33]   
Окисление металлов и сплавов (1965) -- [ c.38 , c.52 ]



ПОИСК



Анионы

Проводимость

Проводимость анионная Шоттки

Проводимость анионная зависимость от температур

Проводимость анионная смешанная



© 2025 Mash-xxl.info Реклама на сайте