Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стойкость химическая тантала

Благодаря высокой антикоррозионной стойкости в ряде сред, в особенности в минеральных кислотах, тантал находит все возрастающее применение в химической аппаратуре (изготовление конденсаторов, дистилляторов, мешалок, облицовка аппаратов и др.).  [c.514]

Ниобий, физико-химический аналог тантала, дешевле последнего приблизительно в 5 раз. Ниобий — технологичный (пластичный) металл, но уступает по коррозионной стойкости танталу, что сужает его применение.  [c.48]


I Тантал, как было указано выше, — наиболее стойкий в коррозионном отношении тугоплавкий металл. Он практически не взаимодействует с большинством органических и минеральных кислот и по химической стойкости приближается к платине. Тантал не склонен к точечной коррозии, что позволяет использовать его в тонких сечениях (что очень важно, учитывая высокую стоимость тантала) [32].  [c.48]

Ниобий - аналог тантала по многим свойствам, в том числе и химическим, ниобий не отличается от тантала, однако по коррозионной стойкости уступает танталу.  [c.50]

Тантал и ниобий применяются в химическом машиностроении, электронике, вакуумной технике, металлургии и других областях. Исключительно высокая химическая стойкость в агрессивных средах позволяет применять тантал и ниобий для изготовления кислотоупорной аппаратуры.  [c.439]

Карбиды — это соединение углерода с металлами (МеС). Они отличаются высокой температурой плавления или разложения. Из всех неметаллических бескислородных соединений наиболее высокая температура плавления у карбида гафния (Hf ) и карбида тантала (ТаС) (3887 и 3877°С соответственно). Карбиды, как правило, стойки к окислению до умеренно высоких температур, обладают высокой твердостью (до 9,5 по Мо-осу), а некоторые, кроме того, и высокой химической стойкостью. Строение карбидов различно. Большинство  [c.225]

Тантал — металл серо-стального цвета с температурой плавления 2980 С и температурой кипения 5370 С плотность при 20 С равна 1660 кг/м при температуре плавления — 1500 кг/м . По химической стойкости тантал уступает благородным металлам его применяют для изготовления тугоплавких износостойких и корро-зионно-устойчивых сплавов.  [c.149]

Ниобий по многим свойствам, в том числе физико-химическим и коррозионным, является аналогом тантала. Однако его коррозионная стойкость заметно ниже, чем тантала, молибдена, вольфрама. Горячие концентрированные кислоты (серная, соляная, фосфорная), в которых тантал стоек, растворяют ниобий. При обычных температурах ниобий, даже в концентрированных кислотах достаточно стоек, также, как в горячих, но достаточно разбавленных кислотах. В щелочных растворах и особенно в кислых фторидах ниобий не стоек. При длительном воздействии кислоты ниобий вследствие его меньшей стойкости охрупчивается выделяющимся водородом несколько сильнее, чем тантал.  [c.300]

Карбидами называются химические соединения с углеродом. Примерами очень устойчивых карбидов могут служить карбиды железа, вольфрама, титана и других тугоплавких металлов. Эти карбиды не разлагаются при обыкновенных температурах ни кислотами, ни щелочами. Высокая химическая стойкость карбидов тугоплавких металлов сочетается с высокой прочностью и твердостью. Твердость карбидов таких металлов, как железо, кремний, вольфрам, титан,тантал, ниобии, ванадий, приближается к твердости алмаза (табл. 5). Карбид кремния, иначе называемый карборундом, широко используется в качестве шлифовального материала в виде самых разнообразных ваточных кругов и т. п. (см. далее 60).  [c.144]


Однако в некоторых средах, таких, как концентрированные соляная и серная кислоты, при повышенных температурах химическая стойкость ниобия недостаточна и значительно уступает химической стойкости тантала. Кроме того, в указанных кислотах при потенциалах катодного выделения водорода ниобий, поглощая выделяющийся водород, охрупчивается 3].  [c.178]

В задачу нашего исследования входило изготовить сплавы системы ниобий—тантал, подобрать оптимальный режим термической обработки, исследовать механические свойства и микроструктуру этих сплавов, а также изучить их химическую стойкость и электрохимические свойства в растворах серной и соляной кислот при повышенных температурах для установления границ коррозионной устойчивости в зависимости от содержания в сплаве тантала.  [c.179]

Из-за высокой коррозионной стойкости, хорошей теплопроводности и пластичности ниобий, цирконий и, особенно, тантал и их сплавы являются ценнейшим конструкционным материалом для химического машино- и приборостроения. Из этих металлов изготовляют теплообменники, нагреватели, реакторы, мешалки, клапаны, вентили, адсорберы, трубопроводы, фильтры и т. п. Тантал, ниобий и их сплавы с никелем, вольфрамом и рением часто используют в качестве заменителей платины, золота и иридия (эталонные разновесы, чашки эталонных весов и т. д.).  [c.174]

Из силицидов промышленное значение имеет дисилицид молибдена, который характеризуется высокой температурой окисления (1500—1800° С) и химической стойкостью против кислот, щелочей, расплавов солей и металлов. Его используют в качестве нагревательных стержней сопротивления и защитных покрытий. Силициды тантала применяют в качестве покрытий по танталу, а силициды бора — по графиту и молибдену.  [c.310]

Химическая стойкость тантала выше стойкости благородных металлов, в том числе и платины. Тантал не разрушается в царской водке, на него действуют только фтористые соединения и дымящая серная кислота.  [c.156]

Ниобий и тантал имеют одинаковые параметры решетки, весьма близкие ионные и атомные радиусы, не подвержены полиморфным превращениям и при сплавлении друг с другом образуют непрерывный ряд гомогенных твердых растворов [55—58]. С увеличением содержаияя тантала коррозионная стойкость сплавов ниобий — тантал повышается, приближаясь к стойкости чистого тантала [49]. Сплавы этой системы с успехом могут заменить чистый тантал во многих химических производствах и в значительной мере снизить его расход. Использованию этих сплавов способствуют и их хорошие механические и технологические свойства, а также отсутствие склонности к межкристаллитной коррозии и коррозии под напряжением. Они хорошо свариваются аргоно-дуговой сваркой. Экспериментально также установлено, что сплавы ниобий—тантал могут применяться в нагартованном состоянии, так как скорость коррозии их в зависимости от степени деформации изменяется незначительно, а именно на 0,01—0,02 мм год [59]. Указанное свидетельствует о том, что увеличение плотности дислокаций в решетке, повышающее уровень внутренних напряжений в результате деформации [60], сопровождающееся изменением структуры от полиэдрической до волокнистой, не оказывает существенного влияния на изменение химической стойкости сплавов ниобий — тантал. Результаты исследования микроструктур указывают, что ни коррозионная  [c.85]

Все тугоплавкие металлы обладают отрицательными нормальными электродными потенциалами и располагаются в ряду активности левее водорода. Высокая коррозионная стойкость тугоплавких металлов обусловлена образованием на поверхности плотной, химически устойчивой пленки, представляющей собой окисел данного металла для Та, Nb, Мо, Zr — это Ta Os, NbiOs, М0О3, Zr O и т.д. Так, например, тантал без окисной пленки обнаруживает сильную анодность по отношению к большинству металлов в течение нескольких секунд после погружения пары в электролит, но образование на его поверхности окисла Таг Os под действием анодного тока быстро изменяет потенциал тантала на обратный и тантал становится катодом (рис. 48). Этот процесс аналогичен процессу пассивации алюминия, но протекает быстрее (рис. 49).  [c.56]


К тугоплавким металлам, рассматриваемым здесь, относятся тантал, цирконий, ниобий, молибден, вольфрам, ванадий, гафний и хром. Данные о Коррозионном поведении этих металлов в морских средах сравнительно немногочисленны. Однако известно, что все эти металлы обладают великолепной стойкостью в различных агрессивных условиях. В химических свойствах тугоплавких металлов много общего. Наиболее важным является способность образовывать на поверхности тонкую плотную пассивную окисиую пленку. Именно с этим свойством связана высокая (от хорошей до отличной) стойкость тугоплавких металлов в солевых средах. При экспозиции в океане все эти металлы подвержены биологическому обрастанию, однако большинство из них достаточно пассивны и сохраняют стойкость дал4е прн наличии на поверхности отложений.  [c.160]

Добавки тантала существенно увеличивают сопротивление сплава трещинообраэованию при резких сменах температуры и прерывистом резании повышают стойкость и позволяют применять скорости резания в 1,5—2 раза выше, чем при использовании обычных сплавов (плотность 12,8—13,3 кГ м , HRA 87—88 kFIauR, (Т а=150— 165 кГ1млА). Ниже приводится химический состав сплава ТТК.  [c.328]

В большинстве соединений тантал пятивалентен, высший окисел Та Оа (пяти-окись тантала) нерастворим в воле, переходит в раствор после сплавлен я со щелочами. Обладая высокими механическими качествами ь химической стойкостью, тантал является ценным материалом для производства химической аппаратуры, хирургических инструментоп, а также изделий электроламповой промышленности.  [c.381]

Пайка тантала. Тантал среди других металлов выделяется исключитель-ной химической стойкостью в сильных кислотах и расплавах щелочных металлов, а также рядом других свойств.  [c.261]

Исключительнан коррозионная стойкость тантала в широких пределах концентраций реагентов и температур обусловила одно из его основных npHM H HHii — в качестве конструкционного материала в химическом аппаратостроении. Устойчивость тантала к действию большого. числа реагентов охарактеризована в табл. 16. Кстати, если тантал подвергается кор-ризми, ю последняя происходит равномерно, без точечного травления.  [c.717]

Изготовление коррозионностойкого химического оборудования является, по-видимому, второй по масштабу областью применения тантала. Помимо прочности и по существу полно11 инертности к воздействию сильно агрессивных нещелочных сред при обычных температурах (за исключением р2, HF и свободного SOa), тантал характеризуется чрезвычайно высокими коэф( )ициентами теплопередачи. Последнее обстоятельство позволяет применять конструкции с тонкими стенками для химического оборудования в случае отсутствия коррозии и пленок продуктов коррозии на поверхности, пузырькового типа парообразования па поверхности при нагревании большинства жидкостей и образования каплеобразного конденсата на паровом или конденсирующей стороне теплообменника. Из всех металлов тантал больше других напоминает по коррозионной стойкости стекло, и его часто используют в химическом машиностроении в сочетании со стеклом, футерованной стеклом сталью и другими неметаллическими материалами.  [c.740]

Тантал. Сплавы на основе тантала также технологичны и перспективны как высокопрочные материалы, однако их раз- I работка сдерживается высокими стоимостью и плотностью, а i также дефицитностью. Твердорастворное упрочнение тантала элементами замеш,ения в основном носит такой же характер, как и в сплавах ниобия. Так как вольфрам оказывает более i сильное упрочняюш,ее воздействие, чем молибден, то во все сплавы тантала добавляют 7-10 % W. Сплавы Т-111 I (рис. 19.7) и Т-222 представляют собой легированные гаф- нием модификации сплава Ta-lOW (с углеродом), имеюш,ие приблизительно такую же технологичность. Для эксплуатации >482 °С в окислительной среде танталовые сплавы нуждаются в заш,итном покрытии. Широкое распространение тантал получил в качестве материала для конденсаторов, а в силу высокой коррозионной стойкости в кислотах и других химических реагентах его применяют в соответствуюш,их областях промышленного производства.  [c.312]

Высокая химическая устойчивость в компактной форме против воздействия сильно концентрированных кислотных смесей. Наибольшей химической стойкостью отличается диборид тантала — ТаВ2.  [c.225]

В тердмодинам ическом отношении металлы титан, ванадий, ниобий, тантал химически активны значения их равновесных потенциалов весьма отрицательны. Их химическая стойкость обусловлена чрезвычайно высокой пассивируемостью. Поэтому показана также связь между химической стойкостью металлов и поведением пассивирующих пленок на их поверхности, которое изучалось эллинсометрическим методом [1, 2].  [c.66]

Таким образом, высокая химическая стойкость сплавов ниобий — тантал обязана исключительно большой пассивиру-емости ниобия и тантала. Предполагается, что пассивирующие пленки на сплавах этой системы представляют собой твердые растворы окислов типа (Nb, Та)205 или более сложные хими-  [c.88]

Представленные данные свидетельствуют о том, что нелегированный ванадий по коррозионной стойкости не может полностью удовлетворить требованиям, предъявляемым к конструкционным материалам химических производств. Однако с помощью легирования его элементами, обладающими высокой хи мической стойкостью либо в окислительных средах (титанУ [67, 9], либо в неокислительных (молибден) [68, 9], либо в тех и других (ниобий, тантал) [66, 9, 72], можно повысить коррозионную стойкость ванадия в цело м ряде агрессивных сред и создать возможность 1использования его в химическом машиностроении в качестве конструкционного материала.  [c.90]

Свойства ниобия и тантала близки. Ниобий более дешевый, зато тантал несколько превосходит его по тугоплавкости и химической стойкости [179]. Эти материалы характеризуются высокой пластичностью, из них легко делать детали выдавливанием и штамповкой. Не теряют пластичности они и при сильном нагреве в условиях высокого вакуума и в атмосфере инертных газов. При повышенных температурах ниобию и танталу свойственна высокая поглощательная способность по отношению к газам, например Н2, О2 и N2, в результате чего эти металлы становятся хрупкими. При тренировке АЭ наблюдается интенсивное газоотделение во всем диапазоне температур от комнатной до 1600°С и эти материалы становятся хрупкими. Такой процесс менее интенсивен при тренировке изделия в атмосфере инертных газов. Взаимодействие ниобия и тантала с керамикой из AI2O3 происходит уже при 1500-1600° С [178]. В зоне контакта металл-керамика протекают интенсивные окислительно-восстановительные реакции. Эти процессы могут идти и через газовую среду с разложением и разрушением решетки [182]. Внешне они проявляются в потемнении керамики по всей толщине, в прилипании металла к керамике, образовании слоя продуктов взаимодействия керамики с металлом и ее разбухании.  [c.39]


Выбор электролита для анодного окисления определяется природой металла и химической стойкостью его оксида. Так, при окислении тантала, ниобия, гафния и циркония можно применять, кроме галогеноводородных, водные растворы любых неорганических кислот и их солей. При окислении титана наилучшие результаты дают растворы лимонной кислоты или фосфата натрия в этиленгликоле. Иногда для окисления этих металлов применяют расплавы солей, обычно эвтектику нитратов натрия и калия. Эффективность окисления в этом случае оказывается значительно ниже 100 %, но скорость роста АОП возрастает за счет высокой температуры электролита.  [c.257]

Расширяющееся применение тантала и ниобия в различных отраслях науки и техники объясняется благоприятным сочетанием свойств этих металлов. Применение тантала и ниобия в химической промышленности связано с высокой коррозионной стойкостью этих металлов во многих агрессивных средах. Большая коррозионная стойкость тантала и ниобия в сочетании с высокой устойчивостью против эрозии делает их весьма эффективнььми конструкционными материалами в химическом машиностроении. Тантал и ниобий можно сваривать точечной, роликовой, стыковой, а также аргоно-дуговой электросваркой, что позволяет широко использовать эти металлы в химической промышленности для облицовки (плакирования) материалов, используемых для изготовления химической аппаратуры [1]. Проводятся разносторонние исследования с тантало-ниобиевыми сплавами, более дешевыми, чем чистые металлы. В частности, исследована [2 —5] коррозионная стойкость сплава Та—МЬ в ряде сред. Однако многие вопросы остаются неисследованными. Некоторые из них рассматриваются в данной работе.  [c.187]

Эти металлы менее устойчивы в ш,елочах. Заметная коррозия наблюдается в горячих растворах едких щелочей и расплавленных щелочах. Во многих средах тантал обладает более высокой коррозионной стойкостью, чем ниобий, и по своей химической стойкости приближается к платине. Характерной особенностью тантала и ниобия является их способность поглощать большие ко.тичества водорода,  [c.466]

Тантал был первым металлом, из которого изготовляли нити осветительных э.лектроламп накаливания, но вноследствии он был вытеснен вольфрамом. Тантал является хорошим геттером и широко используется при производстве электровакуумных радиоламп. Благодаря высокой коррозионной стойкости его применяют для изготовления деталей химической аппаратуры, работающих в кислых агрессивных средах, например при производстве искусственного олокна.  [c.477]

Изучение коррозионной стойкости и электрохимических свойств ниобия, тантала и сплавов ниобий—тантал проводили в 20 и 36%-ных растворах соляной кислоты при 100° С. Данные коррозионных испытаний показывают, что в 20%-ном растворе кислоты совершенно устойчивы сплавы, содержащие не менее 5 вес. % тантала (см. рис. 2, кривая 3), тогда как в более концентрированной кислоте (36 %-ной) резкое улучшение коррозионной стойкости наблюдается только при наличии в сплаве 30 вес. % тантала. Скорость коррозии этого сплава равняется 0,07 г/м час (см. рис. 2, кривая 4). Таким образом, при снижении содержания тантала в сплаве ниобий—тантал ниже указанного количества наблюдается заметное увеличение скорости коррозии в растворах соляной кислоты. Потенциостатические поляризационные кривые, представленные на рис. 5, показывают, что ток коррозии сплавов уменьшается по мере увеличения в последних содержания тантала. Анодные поляризационные кривые для сплавов ниобий—тантал занимают промежуточное положение между ниобием и танталом. При этом плотность тока на тантале в пассивном состоянии как в 20%-ной, так и в 36%-пой кислоте не превышает 10 мка/см . Эта величина плотности тока характеризует тантал как металл, имеющий высокую химическую стойкость в соляной кислоте. У ниобия ток коррозии в пассивном состоянии в 20%-ной кислоте равняется 100 мкаЬм (см. рис. 5 кривая 1), что в пересчете на скорость коррозии будет соответствовать 0,6 г/м час. В 36%-пом растворе кислоты происходит резкое увеличение плотности тока коррозии ниобия, которая достигает значения, равного 1 ма/см .  [c.186]

Высокая химическая устойчивость сплавов системы ниобий—тантал зависит от присутствия на их поверхности защитных пленок, которые, по-видимому, состоят из смешанных окислов высших валентностей тантала и ниобия, т. е. TajOg и NbjOj. При наличии в сплаве 5 вес.% тантала он обладает высокой устойчивостью при 100° С в 40 и 75%-ных растворах серной кислоты и в растворах соляной кислоты вплоть до растворов 20%-ной концентрации. Такая высокая стойкость сплавов системы ниобий-тантал дает возможность применить их во многих химических производствах и тем самым в значительной степени снизить расход тантала. Однако в концентрированной соляной кислоте (36%-ной) при 100° С коррозионно устойчивыми являются сплавы, содержащие не менее 30% тантала.  [c.190]

Положение металла в периодической системе элементов Д. И. Менделеева не характеризует в общем виде стойкость металлов против коррозии главным образом потому, что она зависит не только от природы металла, но и от внешних факторов коррозии. Однако некоторую закономерность и периодичность в повторении коррозионных характеристик металлов наряду с их химическими свойствами в периодической системе установить можно. Так, наименее коррозионно стойкие металлы находятся в левых подгруппах I группы (литий, натрий, калий, рубидий, цезий) и И группы (бериллий, магний, кальций, строиций, барий) наиболее легко пассивирующиеся металлы находятся в основном в четных рядах больших периодов в группах V (ванадий, ниобий, тантал), VI (хром, молибден, вольфрам, уран) и VIII (железо, рутений, осмий, кобальт, родий, иридий, никель, пал-  [c.37]

Тантал (уд. в. 16,6) по химической стойкости приближается к платине. Применяется для изготовления химической посуды. Стоек против красной дымящей азотной кислоты и смеси ее с дымящей серной кислотой до температуры 150° С. Стоек также в НС1, НВг, Н3РО4 различных концентраций. Быстро разрушается в плавиковой кислоте и в концентрированных щелочах при кипении. Стоек в воде и в атмосфере. В условиях наводорожи-вания становится хрупким.  [c.61]


Смотреть страницы где упоминается термин Стойкость химическая тантала : [c.352]    [c.277]    [c.382]    [c.359]    [c.727]    [c.728]    [c.87]    [c.195]    [c.553]    [c.81]    [c.93]    [c.93]    [c.262]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.156 ]



ПОИСК



ТАНТА

Тантал

Тантал химические

Химическая стойкость



© 2025 Mash-xxl.info Реклама на сайте