Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Световод Схема

Голографические схемы с использованием для передачи когерентного излучения регулярных волоконных световодов представлены на рис. 29. Волоконно-оптические  [c.78]

Рис. 23. Схема получения голограмм с по-МОЩЬЮ волоконных световодов Рис. 23. <a href="/info/454894">Схема получения</a> голограмм с по-МОЩЬЮ волоконных световодов

Оптические источники чрезвычайно распространены. Их отличает топологическая мобильность схем нагрева, возможность подачи световой энергии в труднодоступные полости с помощью световодов, удобство управления лучом. Мощные источники типа световых печей могут нагревать металлы до температур плавления. Сведения об источниках света можно найти в литературе.  [c.123]

Схема зонда с применением гелий-неонового лазера показана на рис. 2.16.. Лазер ЛГ-56 с блоком питания СБП-5 дает пучом света с длиной волны 1 — = 0,6328 мкм. Фотометрирование интенсивности излучения рассеянного света под углом 20° вперед и назад осуществляется фотоэлектронным умножителем ФЭУ-51. Питание ФЭУ производится от стабилизированного высоковольтного выпрямителя Б5-24, а ток ФЭУ регистрируется микроамперметром М-95. В конструкции зонда использованы стекловолоконные световоды, что позволило выполнить его небольших размеров. Луч света от лазера по трубке 1 направляется через отверстие 2 диаметром 0,7 мм в головке 5 в исследуемый объем среды. Информация о рассеянии света через насадки 3 поступает к торцам световодов 6 и выводится к ФЭУ. Трубка 1 и световоды 6 проходят внутри тубуса зонда 7, с которым соединена головка зонда 5. Насадка 3 предохраняет световод, от механических повреждений. Отверстия в головке лежат в плоскости поляризации света. Продувка воздухом через отверстия 4 предотвращает попадание влаги в рабочие каналы.  [c.46]

В приёмниках на основе фазовой модуляции света приём звука осуществляется с помощью интерферометрия. схем (Маха — Цендера, Майкельсона, Фабри — Перо и др.) благодаря интерференции световых волн, по-разному промодулированных звуком. Изменение фазы световой олны Дф происходит в результате изменения эфф. показателя преломления Пдф и длины световода L под действием звукового давления р  [c.461]

Визуальные наблюдения осуществляются с помощью оптических трубок (бороскопов). Для возможности визуального наблюдения конструкция должна иметь соответствующие полости (лючки и т. п.), позволяющие проводить осмотр. Применяются оптические трубки, дающие увеличение з два-три и более крат, с диаметром поля зрения 3—20 мм. Используются оптические трубки с внутренними зеркалами, позволяющие передать изображение по криволинейному каналу. В последние годы для этой цели используются световоды, выполненные на основе волоконной оптики. Принципиальная схема бороскопа показана на рис. 52.  [c.189]

Рис. 1.1. Схема поперечного сечения и профиля показателя преломления волоконного световода со ступенчатым профилем показателя преломления. Рис. 1.1. <a href="/info/143766">Схема поперечного</a> сечения и <a href="/info/376681">профиля показателя преломления</a> <a href="/info/32439">волоконного световода</a> со ступенчатым профилем показателя преломления.

Рис. 2.2. Схема симметризованного SSF-метода, используемого для численного моделирования. Длина световода разбивается на большое количество сегментов длины А. Внутри сегмента действие нелинейности учитывается в центральной точке, указанной штриховой линией. Рис. 2.2. Схема симметризованного SSF-метода, используемого для <a href="/info/26074">численного моделирования</a>. Длина световода разбивается на большое количество сегментов длины А. Внутри сегмента действие нелинейности учитывается в <a href="/info/35061">центральной точке</a>, указанной штриховой линией.
Альтернативная схема [67] использует эффект ВКР (см. гл. 8) для усиления солитонов при этом используется излучение накачки, сдвинутое выше по частоте на 13 ТГц (оно периодически инжектируется в световод). Поскольку ВКР-усиление распределено по всей длине световода, можно адиабатически усилить солитон, приблизительно поддерживая N = I выполнение данного условия значительно уменьшает рассеянную долю энергии. С этой точки зрения схема, использующая ВКР-усиление, наиболее перспективна в реальных системах [68, 72].  [c.128]

Рис. 5.11. Схема экспериментальной установки (вверху), использованной для получения автокорреляционных функций (внизу), демонстрирующих восстановление солитонов в световоде длиной 10 км при ВКР-усилении, Высота кривой в случае без усиления была увеличена примерно в пять раз для того, чтобы облегчить сравнение соответствующих длительностей [69]. Рис. 5.11. Схема <a href="/info/127210">экспериментальной установки</a> (вверху), использованной для получения <a href="/info/158112">автокорреляционных функций</a> (внизу), демонстрирующих восстановление солитонов в световоде длиной 10 км при ВКР-усилении, Высота кривой в случае без усиления была увеличена примерно в пять раз для того, чтобы облегчить сравнение соответствующих длительностей [69].
Рис. 5.15. Схема солитонной линии связи. Солитоны вводятся в цепочку световодов, состоящую из многих сегментов длиной L. На конце каждого сегмента через частотно-зависимый направленный ответвитель в обоих направлениях вводится излучение накачки от непрерывного лазера. Рис. 5.15. Схема <a href="/info/560488">солитонной линии связи</a>. Солитоны вводятся в цепочку световодов, состоящую из многих сегментов длиной L. На конце каждого сегмента через частотно-зависимый направленный ответвитель в обоих направлениях вводится излучение накачки от непрерывного лазера.
Рис. 8.4. Схема перестраиваемого ВКР-лазера, Зеркала М, и образуют резонатор Фабри Перо, Микролинзы служат для ввода и вывода излучения из световода. Внутрирезонаторная призма обеспечивает перестройку лазера при вращении зеркала [34]. Рис. 8.4. Схема перестраиваемого ВКР-лазера, Зеркала М, и образуют резонатор <a href="/info/175136">Фабри Перо</a>, Микролинзы служат для ввода и вывода излучения из световода. Внутрирезонаторная призма обеспечивает перестройку лазера при вращении зеркала [34].
Перестраиваемый волоконный ВКР-лазер использовался и для демонстрации усиления фемтосекундных оптических импульсов в волоконном ВКР-усилителе в условиях как попутной, так и встречной волн накачки [105]. Попутная накачка использовалась в схеме, где 500-фемтосекундные импульсы сначала проходили через отрезок световода длиной 100 м, где в результате действия дисперсии они уширялись до 23 ПС. Уширенные импульсы вместе с импульсами накачки длительностью 50 пс на длине волны 1,06 мкм вводились в усилитель, состоявший из 1-метрового световода. Усиленные импульсы сжимались в решеточном компрессоре. Сжатые импульсы были несколько шире (600-700 фс) исходных, но усилены по энергии в 15 ООО раз, когда мощность импульсов накачки составляла 150 кВт. Эксперимент показал, что частотная модуляция 23-пикосекундных исходных импульсов мало изменяется при усилении. Это указывает на возможность использования ВКР сверхкоротких импульсов в световодах не только для генерации фемтосекундных импульсов, но и для получения высоких пиковых мощностей.  [c.247]


Эндоскопические оптические приборы предназначены для рассмотрения внутренних поверхностей и предметов в труднодоступных полостях и объемах. Сегодня медицинская и техническая. эндоскопия превратилась в обширную и быстроразвивающуюся отрасль оптического приборостроения. Весьма перспективным является использование в >ндоскопии голографических схем с применением. элементов волоконной оптики различных типов. Они позволяют существенно упростить конструкцию голографических схем при введении в одну из ее оптических ветвей — объектную или опорную, или обе одновременно — световодов. При. этом уменьшается число необходимых. элементов, габаритные размеры и масса схемы, увеличивается ее светосила и, что весьма важно, помехозащищенность (от пыли, вибрации и т. п.). Использование световодов в юлографии существенно расширяет области применения интерференционных методов исследования изучение труднодоступных объектов и закрытых полостей, упрощение получения голограмм объектов одновременно для нескольких углов освещения (.это особенно важно при исследовании неоднородностей сложной формы). При этом возможно получение на одной фотопластинке при ОДНОМ общем опорном пучке одновременно несколь-  [c.77]

Передача изображения в интегральной голографии осуществляется посредством введения в схемы элементов волоконной оптики и многомодовых волноводов. Напомним, что если диаметр волокон сравним с длиной волны света, то такое волокно следует рассматривать как ди.электри-ческий волновод, в котором существуют лищь вполне определенные постранственно-временные распределения. электромагнитного поля световой волны — моды. Многомодовые волноводные системы передачи изображения, способные уже в настоящее время конкурировать с во.до-конными системами, представляют собой плавно или дискретно неоднородные среды. Они получили название самофокусирующих волноводов (или селфоков). Коэффициент преломления п (г) в таких волноводах скачкообразно или плавно меняется в радиальном направлении по закону п(г)=п )( — Ь ,/2), где о — коэффициент преломления на оси, г — радиус световода, Л — постоянная. Многомодовые системы обеспечивают разрешающую способность порядка 300 линий/мм.  [c.79]

Помимо использования монолитных прямоугольных световодов, в схеме голографического зонда возможно также применение гибких и жестких пучков волоконных световодов. Принципиально конструкция так010 голографического зонда ничем не отличается от конструкции зонда, приведенной на рис. 31. Однако для устранения мозаичной картины голографического изображения (воспроизводящей структуру пучка волоконных световодов) желательно, чтобы фото.эмульсия находилась на некотором расстоянии от выходного торца световода, при. этом расходящиеся световые пучки из каждого волокна пучка перекрываются и мозаичность исчезает.  [c.82]

Для количественных измерений удобнее схема трехволоконного интерферометра (см. рис. 6, б). Луч лазера распределяется между световодами I, 3, 4 в элементе связи 2. Световод 4 подвергается внешнему воздействию, изменяющему фазу фз на входе фазо-анализатора 6. Световоды I и 3 изолированы от внешних воздействий. Настроечный элемент 5 может изменять натяжение волокна световода 1, а следовательно значение фх. По распределению интенсивностей на выходе волокон можно определить величину и знак фазы, т. е. полностью определить внешнее воздействие.  [c.63]

Исследование влияния фоновых засветок на чувствительность приемников излучения проводилось по следующей схеме. На фотоприемник по двум световодам направлялись одновременно два потока излучения. Небольшой постоянный уровень полезного синусоидального сигнала обеспечивался модулированным потоком от электрической лампочки, питание которой стабилизировалось. Другой поток (фоновая засветка) исходил от модели черного тела и не модулировался. Уровень фоновой засветки регулировался изменением температуры модели черного тела и был значительно выше величины модулированного потока, обеспечивающего полезный сигнал. Величина фоновой засветки (излучения от модели черного тела) периодически измерялась этим же приемником, для чего включалась модуляция фонового излучения и перекрывался поток от лампочки. Испытывались приемники излучения типа ФСА-1, ФСА-Г1, ФД-ЗА, ФСА-8АН, фотосопротивление на основе PbSe и пироприемник.  [c.148]

Рис. 132. Схема устройства из волоконных световодов для исследования развития трещин на невращающихся образцах. Рис. 132. Схема устройства из <a href="/info/32439">волоконных световодов</a> для исследования <a href="/info/48118">развития трещин</a> на невращающихся образцах.
Техно л. схема плазмохим. процесса кроме операций, присущих любому хим. процессу (подготовки сырья, сохранения, выделения и очистки целевого продукта), содержит стадии генерации плазмы, плазмохим. превращений и закалки. В генераторе плазмы происходит преобразование теплоносителя или реагента в плазменное состояние. Обычно в качестве генератора плазмы используется плазмотрон, применяются также ударные трубы и мощные лазеры. В смесителе плазмохим. реактора образуется смесь плазмообразующего газа с остальными реагентами, обладающими задаваемыми параметрами, определяемыми термодинамикой и кинетикой процесса. При этом начинается хим. реакция, зависящая от организации смешения компонентов и продолжающаяся непосредственно в реакторе. Если необходимо, реакцию прекращают не непосредственно в реакторе. Прекращают реакцию на требуемой стадии резким снижением темп-ры в закалочном устройстве. Плазмохим. технологию применяют для органич. и неорганич. синтеза, для получения ультра дисперсных порошков, плёнок органич. и неорганич. материалов, для получения мембран разл. типов, травления, модификации поверхности разных материалов и изделий, обработки по-ли.меров, получения световодов и т. д. П. используется в физ. и хим. анализе.  [c.619]


В качестве фотоприёмников чаще всего применяются, фотодиоды или фотоумножители. Из-за нестабильности электронных элементов фазовый сдвиг сигналов за время измерений подвергается дрейфу. Для его учёта в С. включается линия оптич. короткого замыкания — система зеркал и призм или световодов, по к-рой модулиров. свет направляется из передатчика в приёмник, минуя измеряемую дистанцию. Измерение разности длин внеш, и Бнутр. дистанции позволяет учитывать и компенсировать ошибку за счёт дрейфа масштабной частоты. Большинство совр. С. построено по гетеродинной схеме с измерением разности фаз на низкой промежуточной частоте, что позволяет автоматизировать процесс измерений с использованием цифровых методов. При этом разность фаз между опорным и измерит, сигналами представляется в виде последовательности импульсов, число к-рых подсчитывается.  [c.464]

Кроме упрощения схемы, следящая система с жидким световодом выгодно отличается от электромеханического привода тем, что благодаря большей эффективности сцинтилляционного счетчика здесь достигается возможность значительного снижения активности источника гамма-излучения, поэтому и биологическая защита в значительной мере упрощается. Кроме того, в силу закона сообщающихся сосудов и несжимаемости жидкости достигается предельное совершенство в отношении синхронности слежения за уровнем в об-ьекте.  [c.87]

Уфимский Технологический Инспиищт Сервиса, г. Уфа Разработана и апробирована усовершенствованная методика анализа содержания ингибиторов отложения солей, позволяющая расширить нижний предел замеряемых концентраций ингибитора до 0,00005 %, при этом в 5 раз уменыпается объем отбираемой пробы и составляет 20 мл. Это достигнуто за счет применения вместо фотоэлектроколориметра специальной лазерной установки для определения оптической плотности исследуемых растворов /5/. Принципиальная схема установки для определения концентрации ингибиторов отложения солей состояла в следующем. Луч света лазера 1 проходит через кювету 2 с исследуемым раствором ингибитора и попадает в светоприемник 3, затем по световоду 4 - в фотоэлектрический умножитель 5.  [c.43]

Подавляющую часть физических процессов и явлений, которые происходят в сплош ных средах (жидких, твердых, газообразных, типа плазмы и др.), можно описать с помо щью систем дифференциальных уравнений или интегродифференциальных уравнений с частными производными. Такие уравнения — весьма сложный математический объект, особенно если они являются нелинейными, а именно учет нелинейных членов в урав нениях является зачастую решающим для описания очень важных эффектов механики сплошной среды. Надежное количественное описание таких эффектов является необхо димым элементом при проектировании самых различных машин и устройств, начиная от таких крупномасштабных объектов, как самолет, подводная лодка, ракета и кончая такими миниатюрными приборами, как интегральная схема, гибкий световод и т. п. Особенно существенно значение количественных характеристик явлений при оптимальном проек тировании конструкций, когда требуется добиться большей экономичности, дальности полета, минимального веса или улучшить другие аналогичные параметры. Так, например, проектирование летательных аппаратов, полет которых может проходить со скоростью, большей скорости звука, требует умения решать задачу об обтекании тела газовым пото ком в рамках нелинейных уравнений газовой динамики. Здесь в рамках линейных моделей не удается правильно описать эффект возрастания сопротивления при приближении ско зости полета к звуковой. Таких примеров можно было бы привести очень много.  [c.13]

Рис. 1.9. Схема эволюции состояния поляризации света вдоль двулучепреломляющего световода, когда излучение вводится под углом 45° к медленной и быстрой осям. Рис. 1.9. Схема эволюции состояния <a href="/info/10262">поляризации света</a> вдоль двулучепреломляющего световода, когда излучение вводится под углом 45° к медленной и быстрой осям.
Для понимания нелинейных явлений в волоконных световодах необходимо рассмотреть теорию распространения электромагнитных волн в нелинейной среде с дисперсией. Цель этой главы-получить основное уравнение распространения оптических импульсов в одномодовых световодах, В разд. 2,1 вводятся уравнения Максвелла и основные понятия, такие, как линейная и нелинейная индуцированная поляризация и диэлектрическая проницаемость, зависящая от частоты. Понятие мод волоконного световода вводится в разд, 2,2, в котором обсуждается также, при каком условии световод будет одномодовым, В разд. 2,3 рассматривается теория распространения импульсов в нелинейной среде с дисперсией в приближении медленно меняющихся амплитуд в предположении, что ширина спектра импульса много меньше частоты электромагнитного поля, В разд. 2,4 обсуждаются численные методы, используемые для решения уравнения распространения. Особое внимание уделено методу расщепления по физическим факторам с использованием быстрого преобразования Фурье на дисперсионном шаге (SSFM) он отличается большей скоростью счета по сравнению с большинством разностных схем.  [c.33]

Рис. 5.8. Схема солитонного лазера, М,, и Mj-зеркала со 100%-ным отражением. М -зеркало с отражением 70%. Пластинка S служит для деления пучка и имеет пропускание 50%. Двулучепреломляющие пластинки В используются для перестройки длины волны лазера. Микроскопические объективы L, и Lj используются для ввода излучения в отрезок одномодового поддерживающего поляризацию световода [57]. Рис. 5.8. Схема солитонного лазера, М,, и Mj-зеркала со 100%-ным отражением. М -зеркало с отражением 70%. Пластинка S служит для деления пучка и имеет пропускание 50%. Двулучепреломляющие пластинки В используются для перестройки <a href="/info/175679">длины волны лазера</a>. Микроскопические объективы L, и Lj используются для ввода излучения в отрезок одномодового поддерживающего поляризацию световода [57].
В первой экспериментальной реализации солитонного лазера Молленауэр и Столен [57] связали резонатор синхронно накачиваемого лазера на центрах окраски с синхронизацией мод с другим резонатором, содержащим отрезок одномодового световода, под держивающего поляризацию. На рис. 5.8 изображена схема экспериментальной установки. При отсутствии волоконного резонатора сам лазер на центрах окраски генерирует импульсы длительностью > 8 пс (длительность на полувысоте по интенсивности), перестраиваемые в диапазоне 1,4-1,6мкм. Тем не менее, когда для обеспечения синхронной обратной связи используется волоконный световод, длительность лазерных импульсов сокращается в зависимости от длины световода до 0,2-2 пс. Автокорреляционные измерения показывают, что импульсы имеют форму, близкую к гиперболическому секансу это подтверждает, что в световоде импульсы являются солитонами.  [c.123]

Возможность данной схемы была продемонстрирована в эксперименте [69], где солитонные импульсы длительностью 10 пс распространялись по 10-километровому световоду с ВКР-усилением и без него. На рис. 5.11 изображена схема экспериментальной установки. Там также показаны АКФ лазерного импульса (без световода) в сравнении с АКФ. полученной на выходе световода. При отсутствии ВКР-усиления солитонный импульс уширяется примерно на 50% из-за наличия потерь. Это находится в согласии с формулой (5.4.6), которая предсказывает Ti/Tq =1,51 для параметров световода, использованного в эксперименте, а именно 2 — 10 км и а = 0,0414 км (0,18 дБ/км). ВКР-усиление осуществлялось за счет инжектирования непрерывного излучения накачки на 1,46 мкм от лазера на центрах окраски в направлении, противоположном распространению солитонов. Мощность излучения накачки составляла 125 мВт. Как видно из рис. 5.11, импульс на выходе практически идентичен по форме и по энергии входному импульсу, что указыв.- т на практически полное восстановление солитона. Малоинтенсив ле крылья в восстановленном солитоне приписаны рассеянной доле энергии, возникающей из-за отличия формы входного импулы.а от гиперболического секанса. Возможности схемы с ВКР-усиленис i были продемонстрированы Молленауэром и Смитом в эксперименте [75], где 55-пико-секундные импульсы могли 96 раз обращаться по 42-километровой волоконной петле без значительного изменения своей длительности. Это соответствовало эффективной длине распространения более чем 4000 км. Конструктивная сторона таких солитонных линий связи, использующих ВКР-усиление, будет рассмотрена далее в этом разделе.  [c.128]


ДОЛЖНОГО усиления солитонов. Наиболее перспективной, по-видимо-му, является схема с ВКР-усилением [67], схематично изображенная на рис. 5.15. Передача информации осуществляется вблизи длины волны минимальных потерь в световоде ( 1,56 мкм). Периодически с интервалом L, используя частотно-зависимый направленный ответвитель, в световод по обоим направлениям вводят непрерывное излучение лазера на длине волны 1,46 мкм. Важными параметрами системы являются скорость передачи информации В, длительность импульса TrwuM, период усиления L и полная длина системы Lj-, которая определяется числом каскадов усиления, при превышении которого распространение солитонов становится неустойчивым. В данном разделе рассматриваются те основные аспекты конструирования, которые определяют параметры системы.  [c.134]

Сначала рассмотрим, существует ли фундаментальное ограничение, накладываемое на систему схемой ВКР-усиления. Когерентное усиление всегда сопровождается спонтанным шумом. Этот шум может приводить к флуктуации времени прихода импульса на детектор. Физически это происходит из-за случайного изменения групповой скорости, возникающего из-за малого случайного сдвига несущей частоты на каждой стад1 усиления [100]. Если импульс не поступает в промежуток времени, предназначенный для его (импульса) обнаружения, происходит ошибка. Если вероятность ошибки поддерживается на уровне ниже 10 , то оказывается [72, 100], что произведение скорости передачи информации на длину системы для световода со смещенной дисперсией (Рз — — 2 пс /км) ограничена величиной  [c.134]

Одним из важнейших применений нелинейных эффектов в волоконных световодах является сжатие оптических импульсов экспериментально были получены импульсы длительностью вплоть до 6 фс. В данной главе рассмотрены методы компрессии импульсов, их теоретические и экспериментальные аспекты. В разд. 6.1 изложена основная идея, представлены два вида компрессоров, обычно используемых для сжатия импульсов,- волоконно-решеточные компрессоры и компрессоры, основанные на эффекте многосолитонного сжатия. В волоконно-решеточном компрессоре используется отрезок волоконного световода с положительной дисперсией групповых скоростей, за которым следует дисперсионная линия задержки с отрицательной дисперсией групповых скоростей, представляющая собой пару дифракционных решеток. Дисперсионная линия задержки рассмотрена в разд. 6.2, в то время как в разд. 6.3 представлены теория и обзор экспериментальных результатов. В компрессорах, основанных на эффекте многосолитонного сжатия, используются солитоны высших порядков, которые существуют в световоде благодаря совместному действию фазовой самомодуляции (ФСМ) и отрицательной дисперсии. Теория такого компрессора представлена в разд. 6.4, далее следуют экспериментальные результаты. Следует отметить, что в одном из экспериментов по компрессии оптические импульсы были сжаты в 5000 раз при этом была использована двухкаскадная схема сжатия, в которой за волоконно-решеточным компрессором следовал оптимизированный компрессор, основанный на эффекте многосолитонного сжатия.  [c.147]

НОМ компрессоре импульс сначала распространяется в световоде в области положительной дисперсии групповых скоростей, а затем происходит его сжатие при помощи пары дифракционных решеток. Задача световода - наложить практически линейную частотную модуляцию за счет комбинации нелинейных и дисперсионных эффектов [39]. Пара дифракционных решеток создает отрицательную дисперсию групповых скоростей, необходимую для сжатия импульсов с положительной частотной модуляцией [4, 7]. С другой стороны, компрессор, основанный на эффекте многосолитонного сжатия, состоит только из отрезка световода специально подобранной длины. Начальный импульс распространяется в области отрицательной дисперсии световода и сжимается за счет совместного действия ФСМ и дисперсии. Компрессия здесь обусловлен фазой начального сжатия, через которую проходят все солитоны высших порядков до того, как их начальная форма восстановится после одного периода соли-тона (см. разд. 5.2). Коэффициент сжатия зависит от пиковой мощности импульса, определяющей порядок солитона N. Оба типа компрессоров взаимно дополняют друг друга, работая обычно в разных областях спектра граница определяется длиной волны нулевой дисперсии ( 1,3 мкм для кварцевых световодов). Таким образом, волоконно-решеточный компрессор используется для сжатия импульсов в видимой и ближней инфракрасной областях спектра, в то время как компрессоры, основанные на эффекте многосолитонного сжатия, используются в области 1,3-1,6 мкм. В области 1,3 мкм за счет использования световодов со смещенной дисперсией можно применять компрессоры обоих типов. Двухкаскадная схема сжатия, где использовались оба типа компрессоров, позволила получить коэффициент сжатия 5000 в области 1,32 мкм [38].  [c.149]

В видимой и ближней инфракрасных областях спектра (л < 1,3 мкм) для сжатия импульсов обычно используют волоконнорешеточный компрессор [14 33]. Задача пары дифракционных решеток создавать отрицательную дисперсию групповых скоростей [4. 7] для импульсов, имеющих положительную частотную модуляцию после прохождения через световод. В данном разделе кратко описан принцип действия пары дифракционных решеток [48 51]. На рис. 6.1 показана схема дисперсионной линии задержки, состоящей из пары решеток представлены соответствующие обозначения. Импульс падает на первую из двух параллельных дифракционных решеток. Различным частотным компонентам в спектре импульса соответствуют разные углы дифракции. В результате разные частотные компоненгы испытывают различную временную задержку при прохождении через пару решеток. Оказывается, что оптический путь  [c.149]

В данном разделе изложена теория волоконно-решеточного компрессора,, а гакже приведен обзор экспериментальных результатов по сжатию сверхкоротких импульсов в видимой и ближней инфракрасной областях спектра. Так как обычные кварцевые световоды имеют положительную дисперсию только при длинах волн 1,3 мкм, такие компрессоры используются до длин волн порядка 1,32 мкм. На рис. 6.2 показана схема волоконно-решеточного компрессора в двухпроходной конфигурации [21]. Исходный импульс вводится в одномодовый, сохраняющий поляризацию волоконный световод через микрообъектив здесь импульс спектрально уширяется и приобретает положительную частотную модуляцию по всей своей длине. Выходной импульс попадает на пару решеток, где он сжимается благодаря ее отрицательной дисперсии. Проходя пару решеток в противоположном направлении, импульс восстанавливает свое первоначальное поперечное сечение. Зеркало М[ слегка наклонено для того," чтобы разделить входной и выходной пучки. Зеркало Mj выводит сжатый импульс из компрессора без внесения каких-либо дополнительных потерь.  [c.153]

Целью других экспериментов было достижение максимального коэффициента сжатия. Коэффициент сжатия 12 был достигнут в эксперименте [15], где 5,4-пикосекундные начальные импульсы лазера на красителе сжимались до 0,45 пс при этом использовался световод длиной 30 м. Большее значение коэффициента сжатия 65 было получено в двухкаскадной схеме компрессии, где импульсы последовательно сжимались в двух волоконно-решеточных компрессорах. В другом эксперименте [21] было осуществлено сжатие 33-пикосекунд-ных импульсов второй гармоники Nd YAG-лазера на 532 нм в однокаскадной схеме получен коэффициент сжатия 80. Данные импульсы проходили через световод длиной 105 м, за ним следовала пара решеток (оптимальное расстояние между ними = 7,24 м) в результате сжатые импульсы имели длительность 0,41 пс. В этом эксперименте использовалась двухпроходная схема сжатия (см. рис. 6.2) сейчас она общепринята. На рис. 6.6 показан сжатый импульс в сравнении с начальным. Соответствующие спектры аналогичны изображенным на рис. 4.12. Входная пиковая мощность 240 Вт соответст-  [c.161]

Для оптимального режима работы ВКР-усилителей на основе световодов из кварцевого стекла разность частот накачки и сигнала должна соответствовать пику комбинационного усиления на рис. 8.1 ( 13 ТГц). В ближнем ИК-диапазоне наиболее практичный источник накачки-Nd ИАГ-лазер, работающий на 1,06 или 1,32 мкм. Для этого лазера максимальное усиление возникает на длинах волн сигнала 1,12 и 1,40 мкм соответственно. Однако с точки зрения оптической связи наиболее интересны длины волн 1.3 и 1,5 мкм. Nd ИАГ-лазер в этом случае можно использовать, если накачкой для сигнала служат стоксовы компоненты высших порядков. Например, стоксова компонента третьего порядка с длиной волны 1,24 мкм от лазера на длине волны 1,06 мкм может служить накачкой для усиления сигнала па длине волны 1,3 мкм. Действительно, в такой схеме былС) получено усиление 20 дБ [56]. Таким же образом первая стоксова компонента на длине волны 1,4 мкм ВКР от лазера с длиной волны 1,32 мкм может служить накачкой для сигнала на длине волны  [c.231]


Привлекательным свойством волоконных ВКР-усилителей является широкая полоса усиления (> 5 ТГц). Они могут использоваться для усиления одновременно нескольких каналов в многоканальной системе оптической связи. Это было продемонстрировано в эксперименте [74], где сигналы от трех полупроводниковых лазеров с распределенной обратной связью в диапазоне 1,57-1,58 мкм одновременно усиливались в поле накачки с длиной волны 1,47 мкм. В этом эксперименте излучение накачки было получено от многомодового полупроводникового лазера, что делает данную схему практически применимой для систем оптической связи. При мощности накачки всего 60 мВт было получено усиление 5 дБ. Теоретический анализ двухканального комбинационного усиления показывает, что в общем случае существует взаимодействие между каналами [75]. Широкая полоса усиления волоконных ВКР-усилителей делает их пригодными для усиления коротких оптических импульсов. Усовершенствованию систем оптической связи с помощью комбинационного усиления уделено значительное внимание [76-81]. Наиболее многообещающим кажется использование комбинационного усиления для передачи сверхкоротких солитоноподобных импульсов по световодам длиной несколько тысяч километров [78, 80] (см. разд. 5.4). В эксперименте [79] импульсы длительностью 10 пс на длине волны 1,56 мкм усиливались при накачке непрерывным лазером на центрах окраски с длиной волны 1,46 мкм. Усиление таких коротких импульсов возможно только благодаря широкой полосе ВКР. Недавно в такой схеме было продемонстрировано прохождение солитонов длительностью 55 пс по световоду эффективной длиной 4000 км [81].  [c.232]

Предьщущие подразделы были посвящены однопроходному ВКР. Если поместить световод в резонатор (см. рис. 8.4), то однопроходный усилитель превращается в волоконный ВКР-лазер. Такие лазеры обсуждались в разд. 8.2.2 в случаях непрерывного или квазинепрерыв-ного режимов (Гд > 1 не). Здесь рассматриваются синхронно накачиваемые волоконные ВКР-лазеры, испускающие импульсы длительностью 100 ПС. В обычной схеме используются импульсы накачки длительностью около 100 пс на длине волны 1,06 мкм от Nd MAF-лазера с синхронизацией мод.  [c.245]


Смотреть страницы где упоминается термин Световод Схема : [c.62]    [c.63]    [c.481]    [c.463]    [c.227]    [c.231]    [c.251]    [c.252]    [c.270]    [c.270]    [c.275]    [c.276]   
Приборы для неразрушающего контроля материалов и изделий (1976) -- [ c.84 ]



ПОИСК



Световод



© 2025 Mash-xxl.info Реклама на сайте