Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна световодов

Для определения распределения интенсивности по сечению можно также использовать стеклянные волокна световода толщиной порядка 50 мкм, согнутого под углом 30° и укрепленного на подвижном кронштейне. Очень быстро позволяет измерять поперечное сечение луча, его расходимость, длительность и другие параметры фотодиодная матрица, при этом по сравнению с фотографическими или телевизионными методами значительно сокращается время измерения.  [c.103]


Диаметр передающего волокна световода, мкм 400 600 800  [c.194]

Такой световод напоминает (см. 1.2) волновод, широко используемый в технике СВЧ. Этот способ транспортировки светового потока применяется в волоконной оптике для передачи информации модулированным световым сигналом. Однако при этом возникли существенные трудности и лишь в последние годы были решены проблемы, основанные на использовании весьма чистых и однородных волокон. Дело в том, что наличие в стеклянном волокне мельчайших пузырьков воздуха, трещин, пылинок и т.д. приводит к рассеянию световых волн и резкому возрастанию потерь энергии, нацело исключающих возможность применения системы таких волокон для целей оптической дальней связи. В результате интенсивной исследовательской работы в 70-е годы была разработана технология получения оптических волокон очень высокого качества. Потери энергии в таких световодах оказываются того же порядка, что и затухание электрического импульса, распространяющегося в металлическом проводнике. Можно ожидать, что несомненная выгода передачи информации на оптических частотах будет реализована не только в условиях космоса, где не играют роли помехи, неизбежно возникающие при распространении свободной световой волны в приземной атмосфере.  [c.93]

Элементы волоконной оптики могут употребляться также и для передачи изображений объектов, находящихся в труднодоступных объемах, для последующей их регистрации на голограмме. При этом входной торец волоконного световода должен находиться в непосредственном контакте с поверхностью объекта (увеличение расстояния между торцом световода и объектом приводит к значительной потере разрешения) либо изображение предмета должно быть спроецировано на входной торец. жгута с помощью линзовой оптики. Каждое отдельное волокно такого жгута передает усредненный световой поток от участка объекта, соответствующего площади входного торца. По.этому изображение передается в виде мозаики 78  [c.78]

В настоящее время промышленность выпускает разнообразные виды волокон, широко используемых в различных областях науки и техники. К ним относятся оптические световоды, квантовые волоконные элементы, техническое стекловолокно, химические, искусственные, синтетические волокна и т. д.  [c.268]

Измерение указанных параметров возможно по анализу распределения рассеянного волокном когерентного излучения [51, 203, 217, 248]. Однако, если волокно прозрачно для излучения лазера, распределение рассеянного волокном лазерного излучения зависит не только от размеров и формы волокна, но и от других факторов, которые необходимо учитывать структуры поперечного сечения волокна (моноволокна, световоды, трубки, многожильные волокна и т. д.), показателя преломления материала, его однородности и изотропности, а также ориентации плоскости поляризации излучения относительно геометрической оси. Эта зависимость объясняется тем, что часть излучения проходит непосредственно через материал волокна и интерферирует с излучением, рассеянным его поверхностью. Особенности внутренней структуры и свойства материала волокна определяют деформацию волнового фронта излучения, проходящ,его через волокно, и вид результирующего распределения интенсивности рассеянного излучения, по которому судят о геометрических параметрах волокна. .  [c.269]


Низкий уровень потерь обеспечивается высоким качеством стекла и устройством световода. Для получения качественного стекла необходимо снизить общее содержание примесей — ионов переходных металлов и ОН" до 10 %. Чистое кварцевое стекло для волоконной оптики получают газофазным методом. Для сглаживания различий между потоками света, проходящими пути разной длины из-за неодинаковых условий полного отражения, волокно имеет центральную часть с более высоким показателем преломления по сравнению с периферийной частью.  [c.325]

Интересный чертой волноводной дисперсии является то, что ее вклад в D (или pj) зависит от параметров волокна радиуса сердцевины а и разности показателей преломления сердцевины и оболочки Ли. Этот факт может использоваться для смещения длины волны нулевой дисперсии Хд к 1,55 мкм, где световоды имеют минимальные потери. Такие световоды со смещенной дисперсией [63] могут в перспективе применяться в оптических системах связи. Можно создавать волоконные световоды с весьма пологой дисперсионной кривой, имеющие малую дисперсию в широком спектральном диапазоне 1,3-1,6 мкм. Это достигается путем использования многих слоев оболочки. На рис. 1.7 показаны измеренные дисперсионные кривые [64] для двух таких световодов с несколькими оболочками, имеющих двух- или трехслойные оболочки вокруг сердцевины. Для сравнения дисперсионная кривая для световода с однослойной оболочкой также показана (штриховой линией). Световод с четырехслойной оболочкой характеризуется низкой дисперсией ( D < 1 пс/км нм) в широкой спектральной области от 1,25 до 1,65 мкм. Световоды с модифицированными дисперсионными характеристиками полезны для изучения нелинейных эффектов, когда в эксперименте требуются специальные дисперсионные свойства.  [c.18]

Цель этой книги-дать всесторонний обзор нелинейных явлений в оптических волокнах. Расположение материала не соответствует хронологическому порядку, в котором разные нелинейные эффекты были впервые изучены в волоконных световодах. Главы расположены т к, чтобы по возможности сделать минимальными повторения.  [c.27]

Г лава 3 посвящена дисперсионным эффектам, которые возникают, когда вводимая мощность и длина световода таковы, что нелинейными эффектами можно пренебречь. Главным образом действие дисперсии групповых скоростей (ДГС) состоит в уширении оптического импульса при его распространении в волокне. Такое вызванное дисперсией уширение рассматривается для нескольких форм импульса уделяется особое внимание действию частотной модуляции, наведенной на входном импульсе. Обсуждаются также дисперсионные эффекты высших порядков, важные вблизи длины волны нулевой дисперсии световода.  [c.28]

Для количественных измерений удобнее схема трехволоконного интерферометра (см. рис. 6, б). Луч лазера распределяется между световодами I, 3, 4 в элементе связи 2. Световод 4 подвергается внешнему воздействию, изменяющему фазу фз на входе фазо-анализатора 6. Световоды I и 3 изолированы от внешних воздействий. Настроечный элемент 5 может изменять натяжение волокна световода 1, а следовательно значение фх. По распределению интенсивностей на выходе волокон можно определить величину и знак фазы, т. е. полностью определить внешнее воздействие.  [c.63]

Для пере дачи световых потоков или изображений элементарные световоды объединяют в жгугы, помещенные в специальные чехлы-оболочки. Жгуты бывают двух видов регулярные и осветительные. В регулярных жгу1 ах волокна световодов в поперечном сечении укладываются упорядоченно так, что на входном и выходном торцах жгуга их расположение одинаково, что позволяет переносить изображение без искажений. Осветительные жгугы могут иметь произвольное расположение волокон и предназначены для передачи света, структура которого по поперечному сечению однородна или не имеет значения.  [c.62]

Ослабление сигнала в оптических волокнах-световодах происходит как за счет поглощения, так и за счет релеевского рассеяния излучения. Можно различать собственное поглощение, которое вызвано взаимодействием распространяющейся волны с компонентами вещества световолокна, и поглощение, связанное с наличием примесей, например, ионов хрома, железа, никеля, магния и других элементов, в частности, воды. Однако полосы поглощения из-за второй причины очень узки. Большая доля потерь световой энергии возникает из-за радиационных потерь релеевское рассеяние получается из-за флуктуаций плотности вещества волокна или нерегулярности световода — изгибания, неравномерности диаметра и т. д.  [c.75]


Весьма существенной с точки зрения получения голографических изображений сильно рассеивающих объектов является присущая волоконным жгутам исключительно высокая светособирательная способность. Волокна с большой числовой апертурой способны захватывать и передавать конус лучей с раскрытием, приближающимся к 180°. Широкое применение нашли световоды и различные волоконные оптические. злементы в связи с развитием нового направления голографии — интегральной голографии.  [c.79]

Передача изображения в интегральной голографии осуществляется посредством введения в схемы элементов волоконной оптики и многомодовых волноводов. Напомним, что если диаметр волокон сравним с длиной волны света, то такое волокно следует рассматривать как ди.электри-ческий волновод, в котором существуют лищь вполне определенные постранственно-временные распределения. электромагнитного поля световой волны — моды. Многомодовые волноводные системы передачи изображения, способные уже в настоящее время конкурировать с во.до-конными системами, представляют собой плавно или дискретно неоднородные среды. Они получили название самофокусирующих волноводов (или селфоков). Коэффициент преломления п (г) в таких волноводах скачкообразно или плавно меняется в радиальном направлении по закону п(г)=п )( — Ь ,/2), где о — коэффициент преломления на оси, г — радиус световода, Л — постоянная. Многомодовые системы обеспечивают разрешающую способность порядка 300 линий/мм.  [c.79]

Помимо использования монолитных прямоугольных световодов, в схеме голографического зонда возможно также применение гибких и жестких пучков волоконных световодов. Принципиально конструкция так010 голографического зонда ничем не отличается от конструкции зонда, приведенной на рис. 31. Однако для устранения мозаичной картины голографического изображения (воспроизводящей структуру пучка волоконных световодов) желательно, чтобы фото.эмульсия находилась на некотором расстоянии от выходного торца световода, при. этом расходящиеся световые пучки из каждого волокна пучка перекрываются и мозаичность исчезает.  [c.82]

Для спектрального анализа шума применяется сцептрон или волоконный анализатор. Он представляет собой набор волоконных световодов — стерженьков 2 (рис. 65) диаметром 0,1 мм и меньше, каждый из которых настроен изменением длины вылета из корпуса на определенную резонансную частоту. Корпус присоединяется к электромеханическому преобразователю 5, в качестве которого используется биморфная пьезоэлектрическая пластинка, а также якорь, приводимый в движение подвижной катушкой электродинамической системы возбуждения. Таким образом, сигнал, полученный со звукоприемника (микрофон) н усиленный усилителем 6, поступает на электромеханический преобразователь 5 и колеблет основание корпуса, где крепятся волокна. С другой стороны, источник света / посылает параллельный пучок на входные концы световодов. На выходе световодов в плоскости изображения возникает матрица из светящихся  [c.174]

Для увеличения точности В.-о. г. используется ряд методов. Так, напр., флуктуации интерференционных полос из за рэлеевского рассеяния и невзаимные сдвиги фаз за счёт разности интенсивностей встречных волн могут быть уменьшены при использовании источников излучения с широким спектром — полупроводниковых лазеров или суперлюминесцентных диодов. Влияние невзаимных эффектов из-за изменения двойного лучепреломления в волокне при разл. внеш. воздействиях (механич., тепловых, акустических и пр.) может быть ослаблено при использовании одномодовых световодов (см. Волоконная оптика). Т.к. прямое измерение сдвига интерференционной полосы сильно ограничивает точность и динамич. диапазон, в реальных В.-о. г. применяются более сложные методы регистрации, использующие фазовую модуляцию, фазовую компенсацию, гетеродинные методы и т. д.  [c.336]

ГД6 мин — мин. длительность импульса при компрессии. В качестве сред с аномальной дисперсией могут быть использованы пары металлов (в области частот вблизи однофотонного резонанса), устройства, состоящие из двух дифракц. решёток, нек-рые типы интерферометров. Оптимальной нелинейной средой для получения фазовой самомодуляции оказываются одномодовые волоконные световоды. Малость нелинейности (для кварцевого волокна % = 3,2-10" см /кВт) с избытком компенсируется возможностью поддержания устойчивого поперечного профиля пучка диам. 3 — 10 мкм па расстояниях порядка длины поглощения Z и 6 (в видимом диапазоне = 10 —10 ем). Оптич. компрессор, состоящий из волновода с нормальной дисперсией и двух дифракц. решёток, позволяет получить S 10. Существ, сжатия могут быть получены и при генерации оптич. солитонов.  [c.304]

Многомодовые ВОЛС имеют принципиальные ограничения по протяжённости и по скорости передачи цифровой информации, определяемые затуханием и ушире-Еием импульсов оптич. сигналов. Последнее обусловлено модовой и хроматич. дисперсиями многомодового оптич. волокна. Использование одномодовых волоконных световодов с малым затуханием (0,2 дБ/км) совместно с полупроводниковыми лазерами, работающими с мин. шириной спектра излучения, позволяет свести к минимуму влияние дисперсии на = 1,3 мкм и передавать цифровую информацию с высокой скоростью и на большие расстояния.  [c.442]

В световоде 4 (закручивание, сжатие, изгиб), к-рые обусловливают двулучепреломление в одномодовых волоконных световодах. В таком анизотропном оптич. волокне оказывается возможным распространение двух ортогонально поляризов. световых волн с разл. фазовыми скоростями. Воздействие акустич. волны на дву-лучепреломляющий световод вызывает изменение разности фаз между ортогонально поляризов. модами, к-рое преобразуется с помощью полнризац. анализатора 6  [c.461]


Благодаря широкому диапазону перестройки, очень узкой линии лазерного излучения и возможности генерировать импульсы пикосекундной длительности лазеры на центрах окраски представляются чрезвычайно заманчивыми для применений в таких областях, как молекулярная спектроскопия и устройства, предназначенные для контроля волоконных световодов. Лазеры на центрах окраски с синхронизацией мод, излучающие на частоте Я = 1,5 мкм [КС1 Т1°( 1)], применялись для генерации очень коротких импульсов в одномодовых волокнах (длительностью около 200 фс). Здесь использовались такие свойства волокон, как фазовая самомодуляция и сжатие импульса (соли-тонный лазер) [см. также разд. 8.5].  [c.428]

Среднее по сечению число отражений t) в прямом цилиндрическом световоде равно t) = 1,18- tg н . Например, в волокне диаметром 10 мкм с углом наклона = 30° меридиональный луч в световоде длиной 100 мм испытывает 5775 отражений, косой луч, касательный к цил индру диаметром 5 мкм, испытывает 23 100 отражений, а среднее по сечению число отражений равно 6800.  [c.571]

За последние 15 лет изучение нелинейных эффектов в оптических волокнах привело к созданию новой области нелинейной оптики, получившей название нелинейной волоконной оптики. Результаты интенсивных исследований в этой области важны как для фундаментальной науки, так и для технических приложений. Использование волоконных световодов для сжатия импульсов позволило получить оптические импульсы длительностью 6 фс. Были разработаны новые типы лазеров волоконные ВКР-лазеры и солитонные лазеры, в которых используются нелинейные эффекты в волоконных световодах. Тем не менее, несмотря на то, что нелинейная волоконная оптика уже достигла определенного уровня зрелости, в научной литературе есть лишь несколько обзоров, а большинство материалов осталось расфедоточенным в оригинальных статьях. Цель данной книги-дать общий обзор различных нелинейных явлений в волоконных световодах. Это современная монография, и, возможно, она стимулирует дальнейшие работы в области нелинейной волоконной оптики, поскольку в ней сконцентрирован материал, рассеянный по многим источникам.  [c.7]

Явление полного внутреннего отражения, управляющее распространением света в оптических волокнах, было известно еще в XIX в, [1]. Первые стеклянные волокна без оболочки [2-4] были изготовлены в 20-х годах нашего столетия, тем не менее развитие волоконной оптики начинается только в 50-е годы, когда использование оболо-чечного слоя [5-7] привело к значительному улучшению характеристик световодов. Волоконная оптика тогда быстро развивалась главным образом с целью использования оптических кабелей из стеклянных волокон для передачи изображений. В книге Капани [8], изданной в 1967 г., дан обзор успехов, достигнутых к тому времени в области волоконной оптики. Первые волоконные световоды по современным меркам имели очень больщие потери (типичные потери составляли 1000 дБ/км). Однако ситуация резко изменилась в  [c.9]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

Важным параметром волоконного световода является мера потери мощности при распространении оптических сигналов внутри волокна. Если Рц-мощность, вводимая в волоконный световод длиной L, прощедщая мощность Pj дается выражением  [c.13]

Потери в световоде зависят от длины волны света. На рис. 1.3 представлен спектр потерь в современном одномодовом волоконном световоде, изготов.пенном по M VD-методу [54]. Волокно имеет минимальные потери 0,2 дБ/км вблизи длины волны 1,55 мкм. Потери значительно возрастают с уменьщением длины волны, достигая уровня 1-10 дБ/км в видимой области спектра. Отметим, однако, что даже при потерях 10 дБ/км постоянная затухания не выше а 210 см . По сравнению с большинством других материалов это чрезвычайно низкая величина.  [c.13]

В обьиных одномодовых волоконных световодах величина В не постоянна вдоль световода, а изменяется случайным образом из-за флуктуаций в форме сердцевины и анизотропии, вызываемой статическими напряжениями. Поэтому линейно-поляризованный свет, вводимый в волоконный световод, быстро теряет первоначальное состояние поляризации. Для некоторых применений желательно, чтобы свет проходил через волоконный световод, не изменяя своего состояния поляризации. Такие световоды называют световодами, сохраняющими состояние поляризации [65-69]. В них преднамеренно создается сильное двулучепреломление, так что малые случайные флуктуации двулучепреломления существенно не влияют на поляризацию света. Один из способов создания двулучепреломления состоит в нарушении цилиндрической симметрии и создании световодов с эллиптической формой либо сердцевины, либо оболочки. Достигаемая таким способом величина двулучепреломления довольно мала (5 10" ). В другом методе двулучепреломление вызывается статическими упругими напряжениями, что позволяет достичь 5 Ю . Часто при изготовлении световода в заготовку с двух противоположных сторон от сердцевины вводятся два стержня из боросиликатного стекла. Модовое двулучепреломление В, вносимое этими элементами, вызывающими статические напряжения, зависит от их положения и толщины. На рис. 1.8 показана зависимость В от толщины d для четырех форм элементов, вызывающих напряжения, расположенных на расстоянии, равном пяти радиусам сердцевины [69]. Величина В = 2 - Q может бьггь достигнута при d в диапазоне 50-60 мкм. Волоконные световоды такого типа часто имеют название панда или галстук-бабочка , указывающее на форму поперечного сечения волокна. Существуют и другие подходы [68], в которых двулучепреломление создается деформированием заготовки.  [c.21]

В гл. 4 рассматривается нелинейное явление фазовой самомодуля-ции ФСМ, являющееся результатом зависимости показателя преломления от интенсивности. Главным образом действие ФСМ состоит в уширении спектров оптических импульсов, распространяющихся в световоде. Если ФСМ и ДГС действуют совместно в оптическом волокне, то их действие сказывается также и на форме импульса. Особенности спектрального уширения наводимого ФСМ без эффекта ДГС и с ним обсуждаются в отдельных разделах. Также рассматриваются нелинейные и дисперсионные эффекты высших порядков, важность которых нарастает, когда импульсы становятся короче 1 пс.  [c.28]


В гл. 6 рассматривается сжатие импульсов, важное с технологической точки зрения, так как это нелинейное явление было использовано для получения импульсов длительностью 6 фс. Используются два типа оптических компрессоров в зависимости от того, длина волны X больше или меньше длины волны нулевой дисперсии волокна. В видимой и ближней инфракрасной областях (к < 1,3 мкм) оптические импульсы можно сжимать в волоконнорешеточном компрессоре до 100 раз. Подробно обсуждаются теория и конструкция таких компрессоров. В области длин волн 1,3-1,6 мкм в компрессорах, основанных на солитонном эффекте, можно сжимать оптические импульсы в 100 раз, используя фундаментальное свойство солитонов высших порядков. Сочетая эти два метода сжатия в области длин волн вблизи 1,3 мкм и используя световод со смещенной дисперсией, можно получить сжатие в 5000 раз. Дается обзор экспериментальных достижений в этой области, а также теория компрессоров, основанных на солитонном эффекте.  [c.29]

Характеристическое уравнение (2.2.9) позволяет определить величины К-параметра отсечки разных мод. Эта довольно сложная процедура описана во многих работах [4. 5], Мы будем главным образом рассматривать одномодовые световоды, поэтому ограничимся обсуждением только условия отсечки, при котором волокно может поддерживать только одну моду, В одномодовых световодах поддерживается только НE -мom, называемая основной модой. Все другие находятся за пределами отсечки, если параметр V < где К -наименьший корень уравнения J(,(FJ = 0 или 2,405. При изготовлении волокон значение Vявляется критическим параметром. Если становится малым, то увеличиваются потери на микро-  [c.38]


Смотреть страницы где упоминается термин Волокна световодов : [c.481]    [c.379]    [c.62]    [c.166]    [c.167]    [c.175]    [c.50]    [c.46]    [c.15]    [c.19]    [c.22]    [c.23]    [c.25]    [c.27]    [c.29]    [c.38]   
Приборы для неразрушающего контроля материалов и изделий том 1 (1986) -- [ c.85 ]



ПОИСК



Волокна

Световод



© 2025 Mash-xxl.info Реклама на сайте