Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

СЖАТИЕ ОПТИЧЕСКИХ ИМПУЛЬСОВ

Более подробно изучается режим синхронизации мод, включены новые разделы, касающиеся лазеров с разгрузкой резонатора и методов сжатия оптического импульса.  [c.8]

СЖАТИЕ ОПТИЧЕСКИХ ИМПУЛЬСОВ  [c.147]

В ранних работах по сжатию оптических импульсов [2 10] использовались как положительная, так и отрицательная дисперсии в зависимости от того, как на импульс накладывалась начальная частотная модуляция. В случае отрицательной частотной модуляции [3] средой с положительной дисперсией служили жидкости или газы. В случае положительной частотной модуляции оказалось, что наиболее подходящим устройством с отрицательной дисперсией является пара дифракционных решеток [4, 7]. В этих экспериментах при сжатии импульсов не использовались нелинейные эффекты. Хотя использовать ФСМ для компрессии импульсов было предложено еще в 1969 г. [11, 12], эксперименты по сжатию импульсов при помощи ФСМ начали проводиться лишь в 80-х годах, когда одномодовые световоды из кварцевого стекла нашли широкое применение в качестве нелинейной среды [13-38]. Были получены импульсы длительностью 6 фс на длине волны 620 нм [20], а также достигнут коэффициент сжатия 5000 на длине волны 1,32 мкм [38]. Такой прогресс был достигнут только благодаря детальному описанию динамики импульса в волоконном световоде и оптимизации параметров световода при помощи численного моделирования [39-47].  [c.148]


Сжатие оптических импульсов 149  [c.149]

Сжатие оптических импульсов  [c.153]

Сжатие оптических импульсов 159  [c.159]

Сжатие оптических импульсов 165  [c.165]

Сжатие оптических импульсов 171  [c.171]

В соответствии с изложенным выше сжатие импульса проводится обычно в два этапа. На первом этапе производится уширение спектра. Второй этап заключается в том, что спектрально уширенный импульс пропускают через диспергирующую среду. В качестве диспергирующей среды можно использовать пару решеток. Таким методом недавно были получены оптические импульсы длительностью 30 фс [12]. Для этого оптический импульс длительностью 70 фс спектрально уширялся при распространении через оптическое волокно, а затем сжимался до 30 фс с помощью пары решеток. Спектральное уширение при прохождении импульса через волокно обусловливается фазовой самомодуляцией за счет эффекта Керра и изменения во времени оптической интенсивности.  [c.333]

Перестраиваемый волоконный ВКР-лазер использовался и для демонстрации усиления фемтосекундных оптических импульсов в волоконном ВКР-усилителе в условиях как попутной, так и встречной волн накачки [105]. Попутная накачка использовалась в схеме, где 500-фемтосекундные импульсы сначала проходили через отрезок световода длиной 100 м, где в результате действия дисперсии они уширялись до 23 ПС. Уширенные импульсы вместе с импульсами накачки длительностью 50 пс на длине волны 1,06 мкм вводились в усилитель, состоявший из 1-метрового световода. Усиленные импульсы сжимались в решеточном компрессоре. Сжатые импульсы были несколько шире (600-700 фс) исходных, но усилены по энергии в 15 ООО раз, когда мощность импульсов накачки составляла 150 кВт. Эксперимент показал, что частотная модуляция 23-пикосекундных исходных импульсов мало изменяется при усилении. Это указывает на возможность использования ВКР сверхкоротких импульсов в световодах не только для генерации фемтосекундных импульсов, но и для получения высоких пиковых мощностей.  [c.247]

Управление формой огибающей методами фурье-оптики. Поиски и разработки оптических систем, оптимальным образом осуществляющих дисперсионное сжатие ЧМ импульсов, или на спектральном языке операцию фазировки спектральных компонент, привели одновременно к созданию эффективных систем, которые позволяют управлять амплитудами и фазами различных спектральных компонент импульса, т. е. управлять комплексной огибающей импульса.  [c.45]

Получение предельно коротких импульсов есть результат реализации простого и наглядного принципа компрессии — фокусировки оптического излучения во времени. Ключевыми моментами фокусировки во времени (здесь прослеживается ясная аналогия с фокусировкой волновых пучков в пространстве) является быстрая фазовая (частотная) модуляция и сжатие промодулированного импульса в диспергирующей среде. Если речь идет о генерации импульсов с длительностью, сравнимой с периодом оптических колебаний, то диапазон сканирования частоты должен быть, очевидно, сравним с несущей частотой.  [c.172]


С практической точки зрения самофокусировка света играет важную роль в возникновении пробоя оптических материалов, что, в частности, ограничивает предельную мощность излучения в мощных лазерных системах, используемых в экспериментах по лазерному управляемому термоядерному синтезу. Самовоздействие коротких лазерных импульсов, распространяющихся в оптическом волокне, вызывает появление фазовой самомодуляции, которая в последние годы широко используется для сжатия световых импульсов до предельно малых длительностей, не превышающих нескольких периодов световой волны [7] (см. также 1.5).  [c.185]

Для более детального изучения данной области, включающей такие приложения, как обработка изображений, частотная фильтрация и сжатие импульса, читатель может обратиться к соответствующей литературе [12, 14]. В работе [14] содержится обзор многих статей по оптическому фазовому сопряжению.  [c.603]

Данный метод получил распространение в фемтосекундную область в работах Шенка и др. [14], которые использовали пару решеток в качестве дисперсионной линии задержки. В их экспери-метах 90-фемтосекундные импульсы на 619 нм проходили через 15-сантиметровый отрезок световода и сжимались примерно до 30 фс после прохождения через пару решеток. Параметры световода и параметры импульса были таковы, что N 3 и z/Zq = 1,5. Из рис. 6.4 ожидается коэффициент сжатия порядка 3. Данный эксперимент привел к серии рекордных результатов [16-19], в которых длительность импульса была сокращена до примерно 8 фс, что соответствовало примерно четырем оптическим периодам. В экспериментах по получению 8-фемтосекундных импульсов [19] 40-фемтосекундные импульсы на 620 нм с пиковой мощностью 10 Вт/см проходили через световод длиной 7 мм и затем сжимались до 8 фс на паре решеток. На рис. 6.5 показана автокорреляционная функция сжатых импульсов. Соответствующий спектр показан на рис. 4.18 (самый верхний рисунок). Ширина спектра была примерно 70 нм, что указывает на то, что при идеальных условиях можно получить спек-  [c.160]

Одним из важнейших применений нелинейных эффектов в волоконных световодах является сжатие оптических импульсов экспериментально были получены импульсы длительностью вплоть до 6 фс. В данной главе рассмотрены методы компрессии импульсов, их теоретические и экспериментальные аспекты. В разд. 6.1 изложена основная идея, представлены два вида компрессоров, обычно используемых для сжатия импульсов,- волоконно-решеточные компрессоры и компрессоры, основанные на эффекте многосолитонного сжатия. В волоконно-решеточном компрессоре используется отрезок волоконного световода с положительной дисперсией групповых скоростей, за которым следует дисперсионная линия задержки с отрицательной дисперсией групповых скоростей, представляющая собой пару дифракционных решеток. Дисперсионная линия задержки рассмотрена в разд. 6.2, в то время как в разд. 6.3 представлены теория и обзор экспериментальных результатов. В компрессорах, основанных на эффекте многосолитонного сжатия, используются солитоны высших порядков, которые существуют в световоде благодаря совместному действию фазовой самомодуляции (ФСМ) и отрицательной дисперсии. Теория такого компрессора представлена в разд. 6.4, далее следуют экспериментальные результаты. Следует отметить, что в одном из экспериментов по компрессии оптические импульсы были сжаты в 5000 раз при этом была использована двухкаскадная схема сжатия, в которой за волоконно-решеточным компрессором следовал оптимизированный компрессор, основанный на эффекте многосолитонного сжатия.  [c.147]

Оптические солвтоны. Чем определяется предельное нелинейное сжатие светового импульса и светового пучка При самосжатии плоских волновых пакетов, обусловленном продольными взаимодействиями, компрессия сдерживается дисперсионным расплыванием. При этом оказывается возможным устойчивый баланс  [c.302]

Р. используется для исследования удалённых объектов. Небольшая подвижная антенна принимает сигналы от перемещающегося объекта, к-рые записываются в виде радиоголограммы, Радноголограмма преобразуется в оптич. модель, реконструкция изображения даёт детальную информацию об объекте. Метод радиолокатора с синтезируемой апертурой был использован на Аполлоне-17 при облете Луны ( 1, = 60, 20 и 2 м) он применяется при исследовании методом голографирования вращающейся планеты, перемещающейся относительно Земли (изображение Венеры в радиоволнах). Р. используется также для получения изображе-ння объектов, скрытых оптически непрозрачными средами, для определения расположения отражающих участков тропосферы, для обработки сигналов больших антенных решёток и мвогоэлементных облучателей (космич. связь и навигация), радиосигналов (сжатие радяолокац. импульсов) в др.  [c.215]


За последние 15 лет изучение нелинейных эффектов в оптических волокнах привело к созданию новой области нелинейной оптики, получившей название нелинейной волоконной оптики. Результаты интенсивных исследований в этой области важны как для фундаментальной науки, так и для технических приложений. Использование волоконных световодов для сжатия импульсов позволило получить оптические импульсы длительностью 6 фс. Были разработаны новые типы лазеров волоконные ВКР-лазеры и солитонные лазеры, в которых используются нелинейные эффекты в волоконных световодах. Тем не менее, несмотря на то, что нелинейная волоконная оптика уже достигла определенного уровня зрелости, в научной литературе есть лишь несколько обзоров, а большинство материалов осталось расфедоточенным в оригинальных статьях. Цель данной книги-дать общий обзор различных нелинейных явлений в волоконных световодах. Это современная монография, и, возможно, она стимулирует дальнейшие работы в области нелинейной волоконной оптики, поскольку в ней сконцентрирован материал, рассеянный по многим источникам.  [c.7]

Возможности таких волоконных световодов с низкими потерями привели не только к революции в области волоконно-оптической связи [14-17], но и к возникновению новой области науки-нелинейной волоконной оптики. Первые нелинейные явления (вынужденное комбинационное рассеяние и рассеяние Мандельштама-Бриллюэна) были экспериментально [18, 19] и теоретически [20] исследованы в одномодовых волоконных световодах еще в 1972 г. Эти работы стимулировали изучение других нелинейных явлений-оптически индуцированного двулучепреломления [21], параметрического четырехфотонного смешения [22, 23], фазовой самомодуляции [24, 25]. Важный результат был получен в 1973 г., когда было теоретически показано, что в оптических волокнах могут существовать солитоно-подобные импульсы, которые обусловлены совместным действием эффектов дисперсии и нелинейности [26]. Оптические солитоны позже наблюдались в эксперименте [27]. Их использование привело к большим успехам в области генерации и управления параметрами ультракоротких оптических импульсов [28-32]. В равной степени важное развитие получило использование оптических волокон для сжатия импульсов [33-36]. Были получены импульсы длительностью  [c.10]

В гл. 6 рассматривается сжатие импульсов, важное с технологической точки зрения, так как это нелинейное явление было использовано для получения импульсов длительностью 6 фс. Используются два типа оптических компрессоров в зависимости от того, длина волны X больше или меньше длины волны нулевой дисперсии волокна. В видимой и ближней инфракрасной областях (к < 1,3 мкм) оптические импульсы можно сжимать в волоконнорешеточном компрессоре до 100 раз. Подробно обсуждаются теория и конструкция таких компрессоров. В области длин волн 1,3-1,6 мкм в компрессорах, основанных на солитонном эффекте, можно сжимать оптические импульсы в 100 раз, используя фундаментальное свойство солитонов высших порядков. Сочетая эти два метода сжатия в области длин волн вблизи 1,3 мкм и используя световод со смещенной дисперсией, можно получить сжатие в 5000 раз. Дается обзор экспериментальных достижений в этой области, а также теория компрессоров, основанных на солитонном эффекте.  [c.29]

Начальное сжатие импульсов, обладаюидих частотной модуляцией, наблюдалось в экспериментах [11, 12] по распространению в световоде оптических импульсов, излучаемых полупроводниковым лазером с непосредственной прямой модуляцией. В первом эксперименте [11] входной импульс на длине волны 1,54 мкм имел положительную частотную модуляцию (С > 0). После 104 км распространения в световоде в области аномальной дисперсии (Pj — — 20 пс /км) импульс уширился почти в 5 раз. Во втором эксперименте [12] полупроводниковый лазер излучал импульсы на длине волны  [c.66]

Оказалось, что в экспериментах по получению фемтосекундных импульсов [37, 38] оптимальная длина световода более чем в 2,5 раза превышает предсказанную соотношением (6.4.3). Это неудивительно, поскольку соотношение (6.4.3) основано на численном решении уравнения (6.4.1), где пренебрегается дисперсионными и нелинейными эффектами высших порядков, что недопустимо при импульсах короче 100 фс. Чтобы точно определить оптимальную длину световода, следует использовать уравнение (5.5.1), где учтены эффекты кубичной 1исперсии, дисперсии нелинейности и задержки нелинейного отклика в волоконных световодах. Как было показано в разд. 5.5, решающий вклад вносится задержкой нелинейного отклика (член, пропорциональный времени отклика 7 ). Данный эффект проявляется в виде сдвига спектра импульса в длинноволновую область (см. рис. 5.20). С длинноволновым сдвигом связана задержка оптического импульса. Такая задержка существенно влияет на взаимодействие между дисперсией и ФСМ (что определяет сжатие импульса). Численные расчеты действительно показывают, что оптимальная длина световода больше, чем предсказано уравнением (6.4.1).  [c.169]

Следующий крупный успех — прорыв в область пикосекундных масштабов времени (t 10 с) датируется 1966—1968 гг. В эти годы были предложены и реализованы методы синхронизации продольных мод лазеров и созданы первые пикосекундные лазеры на стекле с неодимом, генерировавшие импульсы с длительностями до нескольких пикосекунд (их стали называть сверхкороткими ) и мощностями 10 —10 Вт. В те же годы были предложены и впервые продемонстрированы методы нелинейно-оптического формирования и сжатия пикосекундных импульсов, запущены параметрические генераторы перестраиваемых по частоте пикосекундных импульсов, позволившие перекрыть видимый и инфракрасный диапазоны спектра. Таким образом, была продемонстрирована эффективность использования быстрой электронной нелинейности в пико- и субпикосекундной оптической технике.  [c.9]


Компрессия фазово-модулированных импульсов в диспергирующих средах. На пути временибго сжатия сверхкоротких лазерных импульсов, получаемых от лазеров с синхронизованными модами, в последние годы достигнуты наиболее впечатляющие результаты по генерации предельно коротких оптических импульсов (длительность около 6 фс = 6 10 " с), содержащих под огибающей всего 2—3 оптических цикла. Комбинированием одного или нескольких компрессоров с каскадом лазерных усилителей удается получать импульсы с рекордной пиковой мощностью, вплоть до 1 ТВт, которые при фокусировке имеют гигантскую интенсивность на уровне 10 Вт/см .  [c.50]

Второй этап компрессии—сжатие импульса, на к-рый наложен чирп. На этой стадии импульс проходит через дисперсионную линию задержки, состоящую из пары установленных параллельно друг другу дифракционных решёток. При этом излучению каждой частоты соответствуют определ. угол дифракции и своя оптическая длина пути— она увеличивается с уменьшением о). Подбором угла падения пучка на решёточную пару можно добиться условий, при к-рых в одном из дифракционных максимумов отич. задержка переднего фронта импульса (с меньшей частотой) будет больше, чем задержка его заднего фронта (с большей за счёт чирпа частотой) в результате импульс на выходе решёточной пары будет скомпенсирован во времени. С помощью компрессии получены оптич. импульсы короче 10 фс достигнутая мин. длительность 6 фс (1987) близка к фундам. пределу (2—3 фс), соответствующему одному световому периоду.  [c.280]

Система, показанная на рис. 8.12, применялась для осуществления сжатия импульсов при самых различных условиях. Например, импульсы длительностью около 50 фс на длине волны Я л 620 нм от лазера на красителе с синхронизацией мод на сталкивающихся импульсах (усиленные лазерным усилителем на красителе, накачиваемого лазером на парах меди) были сжаты с применением волокна длиной около 10 мм до длительности около 6 фс. Эти импульсы состоят примерно из трех оптических периодов и в настоящее время являются наиболее короткими. Импульсы длительностью около 6 пс (и пиковой мощностью около 2 кВт) от лазера на красителе с синхронной накачкой и с синхронизацией мод были сжаты с помощью системы, показанной на рис. 8.12, с использованием трехметрового волокна до длительности около 200 фс (Рр = 20 кВт). Эти импульсы были снова сжаты второй такой же системой, показанной на рис. 8.12, с волокном длиной 55 см до длительности 90 фс.  [c.524]

Использовать солитоны в высокоскоростных линиях связи можно двояко. В первом случае цель довольно скромная солитонный эффект используют для того, чтобы увеличить длину световода (так называемое расстояние между ретрансляторами) по сравнению с расстоянием для линейной системы (малые уровни мощности, отсутствие нелинейных эффектов). Как видно из рис. 5.4, длительность солитона высшего порядка первоначально уменьшается. Начальное сжатие происходит даже при наличии потерь в световоде, и это может скомпенсировать уширение солитона из-за потерь [74]. Поскольку период солитона для 100-пикосекундных импульсов, распространяющихся на длине волны 1,55 мкм, относительно велик (> 500 км), такие импульсы могут распространяться на расстояния 100 км, прежде чем они значительно уширятся по сравнению с начальной длительностью. В работе [73] было предсказано, что расстояние между ретрансляторами можно увеличить более чем в 2 раза, когда пиковая мощность входного импульса достаточна для создания солитонов высшего порядка. Требуемые значения пиковой мощности для передачи импульсов без частотной модуляции со скоростью 8 Гбит/с относительно невелики ( 3 мВт). Так как такой уровень мощности вполне достижим для полупроводниковых лазеров, солитонный эффект легко можно использовать для улучшения работы оптических линий связи.  [c.127]

В видимой и ближней инфракрасных областях спектра (л < 1,3 мкм) для сжатия импульсов обычно используют волоконнорешеточный компрессор [14 33]. Задача пары дифракционных решеток создавать отрицательную дисперсию групповых скоростей [4. 7] для импульсов, имеющих положительную частотную модуляцию после прохождения через световод. В данном разделе кратко описан принцип действия пары дифракционных решеток [48 51]. На рис. 6.1 показана схема дисперсионной линии задержки, состоящей из пары решеток представлены соответствующие обозначения. Импульс падает на первую из двух параллельных дифракционных решеток. Различным частотным компонентам в спектре импульса соответствуют разные углы дифракции. В результате разные частотные компоненгы испытывают различную временную задержку при прохождении через пару решеток. Оказывается, что оптический путь  [c.149]

Недостатком пары решеток является то, что спектральные компоненты импульса диспергируют не только во времени, но и в пространстве. В результате оптический пучок расходится между двумя решетками поперечное сечение его напоминает вытянутый эллипс, а не круг. Такая деформация пучка явно нежелательна и становится просто недопустимой при больших расстояниях между решетками. Самое простое решение - отразить пучок обратно на решетки [52]. Такая двухпроходная схема не только восстанавливает исходное поперечное сечение пучка, но и удваивает величину дисперсии групповых скоростей, тем самым уменьшая расстояние между решетками в 2 раза [21]. Небольшой наклон отражаюшего зеркала позволяет разделить траектории сжатого и входного импульсов. На практике почти повсеместно применяется двухпроходная схема.  [c.152]

В первом эксперименте по сжатию импульсов в оптических световодах [13] 5,5-пикосекундные (FWHM) начальные импульсы на 587 нм с пиковой мощностью 10 Вт распространялись через световод Длиной 70 м. 20-пикосекундные выходные импульсы были почти прямоугольны по форме и имели уширенный за счет ФСМ спектр с практически линейной частотной модуляцией. Это свойство пред-полагалс сь [39] из совместного действия дисперсии и нелинейности (см. рис. 6.3). В качестве дисперсионной линии задержки вместо пары решеток использовался газ атомов натрия. Сжатые импульсы имели  [c.159]

В первом эксперименте на длине волны 1,06 мкм [22] 60-пикосе-кундные импульсы были сжаты в 15 раз после прохождения 10-метрового световода и пары решеток Ь 2,5 м). В другом эксперименте [23] был достигнут коэффициент сжатия 45 использовались световод длиной 300 м и компактная дисперсионная линия задержки из пары решеток. Обычно в сжатых импульсах на 1,06 мкм значительная доля энергии переносится в несжатых крыльях импульса, поскольку для уменьшения оптических потерь обычно используют меньшие длины световодов, чем те, которые предписаны уравнением (6.3.5). Когда дисперсионные эффекты не проявляются до конца, только центральная часть импульса имеет линейную частотную модуляцию и энергия в крыльях остается несжатой. Для устранения этих крыльев применяется метод спектральной фильтрации [24]. При этом используется тот факт, что крылья содержат спектральные компоненты крайних частот спектра импульса их можно устранить, помещая диафрагму (или фильтр) рядом с зеркалом М, на рис. 6.2. На рис. 6.7 сравниваются автокорреляционные функции сжатых импульсов, полученные со спектральной фильтрацией и без нее [64]. Начальные 75-пикосекундные импульсы были сжаты до 0,8 пс в обычном волоконно-решеточном компрессоре при этом коэффициент сжатия был более 90. При использовании метода спектральной фильтрации крылья в сжатом импульсе были устранены, при этом длительность импульса увеличилась лишь до 0,9 пс. Данный метод был использован для генерации импульсов заданной фопмы за счет использования специального амплитудно-фазового экрана вместо обычной диафрагмы [63-65]. Кроме того, для этих целей можно также использовать [66] модуляцию по времени импульсов с частотной модуляцией сразу на выходе из световода (до прохождения пары  [c.162]


В экспериментах [36-38] были получены коэффициенты сжатия 1000 при этом использовалось сжатие в две стадии, когда за волоконно-решеточным компрессором следовал солитонный компрессор. В этих экспериментах использовались 100-пикосекундные импульсы Nd YAG-лазера с синхронизацией мод, работающего на длине волны 1,32 мкм. На первой стадии использовался волоконнорешеточный компрессор здесь получены импульсы длительности порядка 1-2 ПС. Затем эти импульсы направлялись в солитонный компрессор длина световода при этом была тщательно подобрана, что позволило получить коэффициент сжатия порядка 50. В эксперименте [38] исходные 90-пикосекундные импульсы были сжаты до 18 фс (содержат только четыре оптических периода) при компрессии в две стадии, общий коэффициент сжатия составлял 5000. На рис. 6.10  [c.168]


Смотреть страницы где упоминается термин СЖАТИЕ ОПТИЧЕСКИХ ИМПУЛЬСОВ : [c.479]    [c.102]    [c.338]    [c.478]    [c.518]    [c.521]    [c.10]    [c.58]    [c.130]    [c.161]   
Смотреть главы в:

Нелинейная волоконная оптика  -> СЖАТИЕ ОПТИЧЕСКИХ ИМПУЛЬСОВ



ПОИСК



Импульс сжатие

Нелинейно-оптическое сжатие (компрессия) лазерных импульсов



© 2025 Mash-xxl.info Реклама на сайте