Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дислокация вершинная

При этом создается положительная клиновидная дислокация, а затем отрицательная клиновидная дислокация, вершина которой сдвинута вниз на небольшое расстояние d = 00 (рис. 6.8.2, д). Один из способов добиться этого таков  [c.41]

Энергия ч. 1. 445 Дислокация вершинная ч. 1. 466  [c.361]

Таким образом, из приведенных рассуждений следует, что факт зарождения какой-либо несплошности (например, при а, = От) вовсе не гарантирует дальнейшего ее развития по хрупкому механизму. Для возможной реализации хрупкого разрушения необходим такой механизм зарождения микротрещины, который делает ее устойчивой к эмиссии дислокаций из ее вершины. Ясно, что реализация такого механизма в общем случае может происходить при условиях, отличных от условия (2.3).  [c.69]


Долговечность первой стадии весьма мала по отношению к долговечности, отвечающей зарождению макроразрушения [ПО, 111, 152]. На самых ранних стадиях процесса формирования зародышевых усталостных микротрещин происходит их притупление за счет пластического деформирования при обратном нагружении. Поэтому микротрещины после зарождения растут стабильно (из-за притупления напряжения в их вершине меньше теоретического предела прочности От. п) по механизму стока дислокаций в их вершины при циклическом нагружении. Условие нестабильного роста микротрещин выполняется при значительном увеличении их длины. Количество циклов, свя-  [c.137]

В работах [232, 234, 356] показано, что для некоторых материалов характеристики вязкости разрушения при циклическом нагружении могут существенно отличаться от характеристик статической трещиностойкости. Циклическое деформирование металла у вершины трещины приводит к нестабильному (скачкообразному) ее развитию при КИН, меньших статической вязкости разрушения Ки. В настоящее время феноменология такого явления достаточно хорошо разработана и описана в работах [29, 197, 232, 234, 267, 356]. Тем не менее физическая природа скачков усталостной трещины изучена недостаточно. Попытаемся дать физическую интерпретацию этого явления. Выше (см. подраздел 2.3.2) была представлена модель, описывающая зарождение усталостного разрушения в масштабе зерна. Разрушение представлялось как многостадийный процесс, включающий зарождение микротрещин по границам и в теле фрагментированной субструктуры, возникающей при циклическом деформировании, стабильный рост микротрещин за счет стока дислокаций в их вершины, образование разрушения в пределах зерна при нестабильном росте микротрещин. Ограничение мае-штаба разрушения при нестабильном росте микротрещин размером зерна возникает в случае их торможения границами зерен или стенками фрагментированной структуры, т. е. при = Oi < 5с(ху), где X/ — накопленная деформация к моменту страгивания микротрещин. Если сгтах 5с(ху), то разрушение может распространяться в масштабе, большем чем размер зерна.  [c.222]

Вследствие смещения одной части атомных рядов кристалла по отношению к другой под влиянием сдвиговых напряжений т в кристалле у вершины смещения образуется винтовая дислокация (рис. 12.36).  [c.471]

Тип мартенсита определяет его механические и технологические свойства. Например, пластинчатый мартенсит в около-шовной зоне более склонен к образованию холодных трещин, чем пакетный. Это связано с тем, что у вершины двойниковой пластины создаются высокие плотность дислокаций и уровень микронапряжений.  [c.524]


Высокая энергия дефектов упаковки подразумевает формирование зоны скопления дислокаций переходного слоя, приводящего к возникновению сильных сжимающих напряжений, которые препятствуют дальнейшему развитию микротрещин, что повышает общую сопротивляемость материала разрушению. Тогда при дальнейшем подводе энергии разрушения начинают формироваться следующие зоны переходного слоя у вершины трещины вплоть до развитой пористой структуры, которая также включается в процесс диссипации энергии нагружения материала, активизируя вязкое разрушение. Вязкое разрушение требует наибольшей подачи энергии в материал.  [c.130]

Для того чтобы ввести понятие о кристаллической дислокации и установить ее связь с упругой дислокацией, рассмотрим модель простейшего кристалла, решетка которого такова, что соседние атомы помещены в вершинах куба. На рис. 14.1.1 изображена одна атомная плоскость такой решетки, линии, соединяющие соседние атомы, образуют одинаковые квадраты. Такое расположение атомов возможно тогда, когда кристалл свободен от дефектов. При наличии дефектов сохранение правильной квадратной сетки уже невозможно, силы, действующие на каждый атом со стороны его соседей, становятся неодинаковыми и решетка искажается. На рис. 14.1.2 изображена атомная плоскость искаженной решетки. Вне области, ограниченной контуром Г, искажение, как видно, невелико. Кристалл с таким незначительным искажением решетки называется хорошим кристаллом, точнее, область вдали от дефекта называется хорошей областью. Но внутри контура Г, заключающего в себе дефект.  [c.454]

Частичная дислокация Франка имеет вектор Бюргерса, перпендикулярный плоскости (111), и обозначается аА или 6D. Эти векторы соединяют центр грани с противоположной вершиной. Так, в результате реакции дислокации Франка с частичной дислокацией Шокли  [c.74]

Образование вершинной дислокации по реакции  [c.76]

Таким образом, дислокации не могут непосредственно перейти из одного зерна в другое (Набарро показал, что напряжение сдвига оказывается очень высоким — одного порядка с теоретическим сопротивлением сдвигу), поэтому распространение скольжения от одного зерна к другому осуществляется путем возбуждения источников дислокаций в соседнем зерне II) под действием концентрации напряжений у вершины полосы скольжения в зерне / (см. рис. 136). В этом случае наиболее эффективно нейтрализуются напряжения от скопления дислокаций в зерне I. При достижении такого напряжения сдвиг пересекает границу, поле напряжений около скопившихся ранее дислокаций ослабевает (релаксация напряжений), создаются условия для дальнейшей пласти-  [c.225]

Разрядка дислокаций приводит к образованию на поверхности макротрещин, и начинает действовать коррозионный химический или электрохимический процесс в вершине трещины.  [c.58]

Последняя частичная дислокация в реакции (2.20) является вершинной и располагается вдоль линии пересечения трех дефектов упаковки.  [c.48]

Зависимость (2.21), в которой и Ку — константы, за достаточно короткое время нашла свое экспериментальное подтверждение на абсолютном большинстве поликристаллических металлов и сплавов. Поэтому эТу зависимость пытались неоднократно объяснить с помощью различных теоретических моделей. Среди таких моделей наибольшее распространение получили теория, связывающая концентрацию напряжений в вершинах индивидуальных полос скольжения с размером зерна [26, 98, 99, 102] модель деформационного упрочнения, согласно которой плотность дислокаций, необходимая для пластической деформации металла, изменяется обратно пропорционально размеру зерна [63] модель начала пластического течения, исходящая из действия зернограничных источников и их определяющей роли в процессе передач , скольжения от зерна к зерну [54, 102].  [c.49]

Согласно первой модели (рис. 2.11) граница зерна ограничивает длину плоского скопления дислокаций Возникающая при этом в вершине скопления концентрация напряжений [103]  [c.50]

В зависимости от состава, чистоты расплава и скорости теплоотвода рост столбчатых кристаллов происходит по механизмам, описанным выше для моно- и поликристаллов. Предпочтительно следует выделить дислокационный механизм. По Франку, на границе раздела фаз на поверхности граней возникают вакансионные диски, а при их захлопывании образуются петли винтовых дислокаций, вершины которых неустойчивы. Вследствие упругого взаимодействия между дислокациями они переползают, стремясь образовать параллельные ряды. В процессе образования рядов дислокаций, как считает Тиллер, свободная энергия понижается, что и способствует росту столбчатых кристаллов.  [c.80]


Предположим, что в первом варианте микротрещина зародилась в плоскости скольжения (например, по механизму Гилмана—Рожанского [25, 247]) и ориентирована параллельно сдвиговым напряжениям, т. е. подвергается только П моде деформирования. В этом случае распределение напряжений у ее вершины согласно работе [199] таково, что т (/Ос(= 1,03, где т г и Ос1 — сдвиговое и растягивающее напряжения у вершины трещины, действующие в плоскостях скольжения и спайности соответственно (Tsi = Tre e=o Ос( = (fee 10 450 где г, 6 — полярные координаты, отсчитываемые от вершины микротрещины). Поскольку в данной ситуации для ОЦК металлов Тзг/сГсг Тт.п/сГт.п = = 0,24 0,28 (тт. п и От.п — теоретическая прочность на сдвиг и на отрыв соответственно), зародившаяся микротрещина не является устойчивой к сдвиговым процессам в ее вершине [230]. С возникновением микротрещины начинается эмиссия дислокации из ее вершины и, следовательно, рост такой микротрещины в процессе деформирования будет пластический, стабильный, контролируемый деформацией. Таким образом, зародышевая микротрещина, ориентированная параллельно сдвиговым напряжениям, растет по пластическому механизму и, следовательно, притупляется, становясь трещиной, не способной инициировать хрупкое разрушение.  [c.68]

Рассмотрим усталостное разрушение зерна поликристалли-ческого ОЦК металла. При периодическом нагружении процесс усталостного разрушения зерна можно подразделить на три стадии 1) зарождение микротрещин по границам и в теле фрагментированной (или ячеистой) дислокационной структуры, возникающей в процессе циклического деформирования 2) стабильный рост микротрещин за счет эмиссии дислокаций из их вершин 3) образование разрушения в масштабе зерна при нестабильном росте микротрещин.  [c.137]

Зарождение острой микротрещины может происходить только по механизмам, обеспечивающим такую ориентацию образовавшихся несплошностей, при которой практически исключается эмиссия дислокаций из вершины зародышевой микротрещины и, как следствие, ее пластическое притупление и превращение в пору. Зарождение острых микротрещин в ряде случаев (при умеренных температурах) происходит при напряжениях, значительно превышающих предел текучести, т. е. при пластической деформации, составляющей примерно 1—20%-Значительно раньше, например при о От, может происходить зарождение пор, т. е. микротрещин, которые при зарождении сразу притупляются за счет эмиссии дислокаций из вершин. Если при зарождении острой микротрещины условие страгива-ния Гриффитса не выполнено, дальнейший ее рост, как и рост пор, может быть только стабильным, обусловленным пластическим деформированием в ее вершине.  [c.146]

Процесс малоциклового усталостщ)го разрушения ОЦК металлов может быть подразделен на три этапа множественное зарождение микротрещин на самых ранних стадиях циклического упругопластического деформирования, стабильное подрастание микротрещин за счет эмиссии и стока дислокаций в их вершины и, наконец, нестабильное развитие микротрещин до ближайших эффективных барьеров, которыми могут являться микронапряжения или границы деформационной субструктуры. Исходя из указанной схематизации усталостного разрушения ясно, что долговечность до зарождения макроразрушения определяется двумя параметрами НДС неупругой деформацией (точнее, размахом неупругой деформации в цикле) и максимальными напряжениями в цикле. Первый параметр определяет скорость стабильного роста микротрещины, а второй — ее критическую длину.  [c.148]

При этом принятые допущения имеют разумное физическое объяснение. Известно, что в поверхностных слоях металла зарождение скользяЩ Их дислокаций значительно облегчено по сравнению с глубинными слоями. Феноменологически это явление связано со снижением напряжения микротекучести материала в поверхностных слоях образца [1, 190]. В результате при весьма низких нагрузках может зародиться микротрещина, размер которой соответствует размеру поверхностного слоя [191]. В то же время при образовании трещины длиной 1° сопротивление пластическому деформированию в окрестности ее вершины увеличивается (деформирование происходит не у свободной поверхности) и дальнейший рост трещины возможен только при нагрузках, приводящих к обратимой пластической деформации материала (строго говоря, к процессам микротекучести) в объеме, большем чем размер зерна, т. е. при А/С > > AKth.  [c.220]

Дрейф точечных дефектов (вакансий) в образующихся локальных полях неоднородных напряжений способствует локализации деформации в переходных зонах между недеформируемыми структурными элементами и активизирует квазивязкие диффузионные механизмы переориентации кристаллической решетки в процессе диссипации энергии. Так, в экспериментах при растяжении тонкой бериллиевой фольги [80] наблюдали, что продвижение трещины происходит за счет образования микропор по границам ячеек. При этом активизируется процесс притяжения дислокаций к поверхности трещины, что также является самовоспроизводящимся процессом формирования будущей поверхности у вершины трещины.  [c.130]

Итак, сопротивление разрушению твердых тел определяется диссипативными процессами, в течение которых в материале происходит формирование зон поверхностных переходных слоев - зоны скопления дислокаций и аморфной зоны с фрактально пористой структурой. Показателем диссипативных свойств материала при самоподобном разрушении является фрактальная размерность, учитывающ.ая вклад в диссипацию энергии двух основных механизмов пластической деформации (образование зоны скопления дислокаций) и образования иесппошностей (образованиие аморфной зоны и переходного слоя вблизи вершины трещины).  [c.131]

Кроме того, в вершине возникающей трещины образуется аморфная зона материала, соответствующая зоне II поверхностного переходного слоя -разрыхленного "квазижидкого" участка. В этой пластической области вследствие активизации процессов диффузии дислокаций происходит локальное повышение температуры, регистрируемое тепловизорнь методом [172]. Это еще более активизирует процесс дальнейшей аморфизации материала у вершины трещины, генерируя структуры предплавления. Последнее вызывает взаимосогласованное, автокаталитическое размножение дефектов.  [c.316]


Дислокация Ломер — Коттрелла, состоящая из одной вершинной н двух дислокаций Шокли, может быть образована при диссоциации единичной дислокации по реакции типа (см. рис. 38,6) D = Dp-)-p6+6 .  [c.78]

Рис. 136. Схема инициирования скольжения (нлн двойннкования) в соседнем зерне поликристалла в некоторой точке А, удаленной от вершины плоского нагромождения дислокаций р на расстояние Г[ Рис. 136. Схема инициирования скольжения (нлн двойннкования) в соседнем зерне поликристалла в некоторой точке А, удаленной от вершины плоского нагромождения дислокаций р на расстояние Г[
Модель Коттрелла (см. рис. 136) поясняет распространение пластической деформации от зерна к зерну несколько дислокаций, вышедших из источника В зерна /, движутся в плоскости скольжения и образуют скопление у границы зерна. У вершины р лидирующей дислокации возникает концентрация напряжений. Коттрелл определил, что дислокации будут образовываться вновь в результате генерации, допустим, источником Франка—Рида В до тех пор, пока действующее в окрестности этого источника напряжение Тт, повышающееся от п дислокаций, задержанных в полосе скольжения, полностью не уравновесится противодействующими напряжениями Xd.  [c.239]

Расчеты по формуле (162) показывают, что количество дислокаций в сколлении достигает 10 —10 когда величина локальных касательных напряжений у вершины скопления равна 0,7 G. Такое количество дислокаций при выходе на поверхность кристалла образует ступеньку порядка нескольких тысяч нанометров, что хорошо согласуется с экспериментальным определением высоты ступенек. Это подтверждает принципиальную возможность образования в плоскости (пачке) скольжения достаточно мощного скопления дислокаций для образования трещины по механизму Стро—Мотта. Особенностью указанной теории является то, что для образования субмикротрещины необходимо накопление достаточного количества дислокаций, обусловливающих пластическое течение, значительно большее, чем это необходимо для возникновения скольжения в соседних зернах.  [c.427]

Пусть Дд(а , у, т, v) — любой скалярный элемент фундаментального решения (например компонента напряжения). В процессе построения фундаментального решения было принято, что дислокация вертикальной компоненты перемещения интенсивности 2Д начинает распространяться от вершины трегцины в момент X = О со скоростью V. Если же дислокация начинает распространяться в момент т = То (а не в момент т = 0), то, очевидно, решением будет функция q x, у, т —То, v). Предположим далее, что интенсивность дислокаций равна 2v Uy а не 2А. Решение такой модифицированной задачи есть q (х, у, г — т v)u Uy Наконец, если — функция скорости V, то результат может быть просуммирован в некотором интервале изменения V. Обозначая через и соответствуюгцие элементы решений искомой задачи и задачи Лэмба, запишем конечный результат  [c.413]

Возникшая в вершине скопления концентрация может релакси-ровать (см. рис. 2.11) различными способами раскрытием хрупкой трещины, возникновением двойника или активацией нового источника дислокаций. Рассмотрим передачу скольжения путем активации источников в соседних зернах. Если один из потенциальных источников находится на некотором расстоя-—  [c.50]

При образовании скопления дислокаций и соответствующей концентрации напряжений у вершины скопления представляется весьма вероятным, что пластическая деформация в соседнем зерне начнется в результате работы зернограничных источников [54, 102]. Удаляясь от поверхности зерна, дислокации, эмитированные этими источниками, взаимодействуют с дислокациями сетки Франка и могут создать новые источники типа источников Франка — Рида. Поскольку эти новые источники не заблокированы примесями, они оказываются способными либо к размножению полных дислокаций, либо (при достаточно высоком уровне напряжений сдвига) — к размножению частичных дислокаций, т. е. к образованию двойника, например, по полюсному механизму Коттрелла — Билби или по механизму Шлизви-ка [20] (рнс. 2.17). Развитая в работе [22] модель, в которой двойникование начинается после частичной (за счет скольжения) релаксации концентраторов напряжений, приводит к получению аналогичной уравнению Холла — Петча для скольжения зависимости напряжения начала двойникования от размера зерна  [c.60]

Айри и Штейн дали определение плоскости скола как плоскости, рост трещины в которой вызывает минимальную пластическую деформацию. На основе расчета сил взаимодействия при движении дислокаций в поле напряжений у вершины трещины они показали [383], что плоскостями скола в молибдене и в вольфраме должны быть плоскости (100), а также (ПО), но с меньшей вероятностью.  [c.190]

В большинстве известных схем [9, 19] образования трещин (в предельном случае — пор) обязательным условием является наличие при низких и средних температурах локальной концентрации напряжений в материале. По теоретической оценке Владимирова и Бетех-тнна [441], требуемая 10—30-кратная концентрация приложенного напряжения, локализованная в объеме порядка 10 —10 мкм, достигается только в вершине скопления дислокаций, испущенных одним источником.  [c.221]

При действии статической нагрузки дислокации, возникающие в межфазной зоне, должны перемещаться на поверхность, однако граница покрытие — основной металл блокирует их. При этом покрытие может либо деформироваться, либо разрушаться. Микро-пластическая деформация определяет развитие субмикрорелаксаци-онных процессов у вершины распространяющейся трещины.  [c.38]

Экстремум на диаграмме конструктивной прочности был обнаружен также и при изотермическом превращении аустенита в интервале температур 250—450°С (рис. 8.17). Наибольшие значец]в .цяз-кости разрушения стали со структурой бейнита соответствуют температуре распада переохлажденного аустенита, равной 350°С. Снижение температуры распада до 250°С ведет к росту предела текучести и уменьшению значений вязкости разрушения. Это связано главным образом с увеличением содержания углерода в а-фазе и увеличением степени блокировки дислокаций внедренными атомами углерода. Уменьшение пластичности ферритной матрицы затрудняет протекание релаксационных процессов в вершине трещины и увеличивает скорость ее распространения, снижая тем самым сопротивление стали хрупкому разрушению. Сложный характер диаграммы конструктивной прочности объясняется не только влиянием структурных изменений в бейните при варьировании температурой распада аустенита, но и сменой морфологии бейнита, т. е. переходом от нижнего бейнита к верхнему. При температурах образова-  [c.149]


Смотреть страницы где упоминается термин Дислокация вершинная : [c.469]    [c.231]    [c.50]    [c.130]    [c.38]    [c.77]    [c.77]    [c.90]    [c.94]    [c.145]    [c.80]    [c.203]   
Механические свойства металлов Издание 3 (1974) -- [ c.0 ]



ПОИСК



Вершина

Дислокация

Дислокация вершинная Винтовая

Дислокация вершинная Ломера — Коттрелла

Дислокация вершинная Шокли

Дислокация вершинная в кристаллах

Дислокация вершинная в упругой среде

Дислокация вершинная единичная

Дислокация вершинная краевая

Дислокация вершинная отрицательная

Дислокация вершинная положительная

Дислокация вершинная полостная

Дислокация вершинная скользящая



© 2025 Mash-xxl.info Реклама на сайте