Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кинетика электрохимической коррозии

На рис. 1-8 показаны основные типы поляризационных диаграмм с различными видами контроля торможения коррозионного процесса катодного (а), анодного (б) и смешанного (в). Построение поляризационных кривых явилось основным методом изучения кинетики электрохимической коррозии, развитым исследованиями Г. В. Акимова и Н. Д. Томашова [Л. 5—11]. Приведенная ниже трактовка результатов экспериментов по изучению котельной коррозии базируется в значительной степени на этом методе.  [c.24]


Основные представления о кинетике электрохимической коррозии металлов  [c.43]

Электрохимические методы. Позволяют изучать механизм и кинетику электрохимической коррозии и заключаются в измерении электродных потенциалов и снятии поляризационных кривых рис. Тб.ЭХ которые исследуются либо гальваностатическим, либо потенциостатическим методами.  [c.262]

Кинетика электрохимической коррозии  [c.28]

Кинетика электрохимической коррозии металлов  [c.35]

Наиболее важным является перенапряжение водорода (катодного процесса), определяющее, по существу, кинетику электрохимической коррозии. Чем больше перенапряжение водорода, тем более затруднено протекание процесса коррозии и тем меньше, следовательно, скорость коррозии металла.  [c.36]

В руководство включено 12 работ, которые разбиты по темам на три группы 1) изучение кинетики окисления металлов при высоких температурах 2) изучение кинетики электрохимической коррозии металлов в различных средах 3) защита металлов от коррозии.  [c.5]

При изучении кинетики электрохимической коррозии также пользуются объемным методом, измеряя объем выделяющихся или поглощаемых в процессе коррозии газов.  [c.17]

ИЗУЧЕНИЕ КИНЕТИКИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ В РАЗЛИЧНЫХ СРЕДАХ  [c.30]

КИНЕТИКА ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ КАТОДНАЯ И АНОДНАЯ ПОЛЯРИЗАЦИЯ  [c.18]

Кинетика электрохимической коррозии 18—22 Кислород, влияние на коррозию 32  [c.204]

КИНЕТИКА ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ  [c.29]

На рис. 1.11 показаны основные типы поляризационных диаграмм с различными видами контроля коррозионного процесса а — катодного б — анодного в — смешанного. Построение поляризационных кривых — основной метод изучения кинетики электрохимической коррозии, развитый  [c.35]

Кинетика электрохимической коррозии. .........19  [c.6]

Даны современные представления о термодинамике и кинетике окисления металлов, механизме образования и законах роста различных пленок, рассмотрены механизм и различные виды электрохимической коррозии, описаны важнейшие методы исследования коррозионных процессов.  [c.2]

Современная теория электрохимической коррозии металлов не противопоставляет два пути (гомогенный и гетерогенный) проте--кания процесса, полагая, что соответствующие теоретические положения, основанные в обоих случаях на использовании электрохимической термодинамики и кинетики, дополняют друг друга, так как каждое из них имеет свои границы применения. В связи с этим попытки необъективной критики одной из этих теорий являются ненужными.  [c.188]


Процессы электрохимической коррозии описываются законами электрохимической кинетики. При этом процессе протекают две группы реакции катодная и анодная. За счет возникающего электрического тока может иметь место удаление продуктов коррозии от очагов разрушения. На скорость процесса коррозии существенное влияние оказывает технология изготовления конструктивного элемента аппарата.  [c.146]

Уменьшение коррозии при введении ингибиторов может произойти вследствие торможения анодного процесса ионизации металла (анодные ингибиторы), катодного процесса деполяризации (катодные ингибиторы), обоих процессов одновременно (смешанные анодно-катодные ингибиторы) и увеличения омического сопротивления системы при образовании на металлической поверхности сорбционной пленки, обладающей пониженной электропроводностью. Таким образом, тормозящее действие ингибиторов коррозии обусловлено воздействием их на кинетику электрохимических реакций, лежащих в основе процессов электрохимической коррозии.  [c.65]

Влияние органических ингибиторов коррозии на кинетику электрохимического растворения металла возможно лишь в условиях адсорбции этих веществ на корродирующей поверхности. В зависимости от степени заполнения частицами ингибитора поверхности металла, подвергающейся коррозии, изменяется строение двойного слоя, а следовательно, и кинетика электрохимических реакций, т.е. может тормозиться стадия разряда или диффузии реагирующих частиц либо предшествующая разряду стадия проникновения этих частиц через адсорбированный слой молекул ингибиторов. В связи с этим особое значение имеет потенциал нулевого заряда , т.е. потенциал металла, измеренный по отношению к электроду сравнения в условиях, когда заряд металла равен нулю. При потенциалах вблизи потенциала нулевого заряда металл обладает наибольшей способностью адсорбировать растворенные в электролите вещества и хуже всего смачивается растворителем.  [c.143]

Исследование кинетики электродных реакций. Один из основных методов изучения механизма процессов электрохимической коррозии металлов и сплавов это построение и анализ поляризационных кривых, пользуясь которыми можно также определить ток коррозии и рассчитать коррозионные потери.  [c.85]

Выше уже отмечалось, что действие ингибиторов атмосферной коррозии так же, как и других типов ингибиторов, сводится, прежде всего, к изменению ими кинетики электрохимических реакций, лежащих в основе коррозии, и к изменению состояния поверхности раздела между металлом и коррозионной средой. Вместе с тем характер коррозионной среды обусловливает определенную специфику и в условиях применения этих ингибиторов, и в самом механизме их действия.  [c.91]

Исследование кинетики коррозии СтЗ в средах, содержащих СВБ и сероводород, показало, что процесс коррозии стимулируется анодной реакцией при воздействии продуктов жизнедеятельности бактерий. В стерильной среде, содержащей сероводород (до 500 мг/л), скорость коррозии незначительна. Это объясняется, вероятно, образованием прочной адгезионной пленки сульфита железа. Продукты метаболизма СВБ разрыхляют эту пленку и таким образом ускоряют процесс коррозии. Целесообразно применение ингибиторов-бактерицидов для одновременного торможения развития и предотвращения процесса электрохимической коррозии металлов [8].  [c.27]

Скорость электрохимической коррозии железа или стали в кислых средах определяется кинетикой лежащих в ее  [c.56]

Начавшийся после увлажнения поверхности металла коррозионный процесс протекает по законам химической я электрохимической кинетики. Скорость коррозии металла при этом зависит от степени увлажнения, химизма атмосферы (природы и концентрации ионов в пленке электролита), температуры, электрохимических свойств самого металла и продуктов его коррозии, частоты увлажнения и т. д. Нередко процессы коррозии осложняются фотохимическими явлениями и продуктами жизнедеятельности биосферы.  [c.70]


Электрохимическая коррозия — это процесс, подчиняющийся законам электрохимической кинетики. При этом виде коррозии одновременно протекают две реакции — анодная и катодная, локализованные на определенных участках поверхности корродирующего металла.  [c.11]

Влияние кислорода. Скорость коррозии металлов в нейтральных растворах существенно зависит от концентрации растворенного в коррозионной среде кислорода, который обеспечивает протекание катодной реакции. В большинстве случаев кислород поступает из атмосферы, и скорость коррозии в соответствии с механизмом диффузионной кинетики электрохимического процесса прямо пропорциональна его концентрации. Линейная зависимость наблюдается до тех пор, пока не будет достигнута достаточно высокая концентрация кислорода, после чего поверхность металла начинает пассивироваться. Содержание кислорода в коррозионной среде зависит как от состава и концентрации солей, так и от температуры, условий перемешивания и других факторов, определяющих его растворимость в данной среде.  [c.25]

В работе [60] высказана иная точка зрения на процесс ингибирования неорганическими окислителями. Авторы считают, что ингибирующее действие этих соединений связано не столько с их адсорбционным взаимодействием с металлом, сколько с влиянием продуктов электрохимического восстановления на кинетику электрохимических реакций. Иначе говоря, если скорость анодного растворения металла определяется активностью поверхностных ионов ОН, образующихся при восстановлении окислителей, то скорость коррозии металла и его потенциал зависят от отношения числа электронов, реализующихся в катодном акте, к числу образующихся при этом ионов ОН-. Это отношение названо авторами коэффициентом активации по его величине предлагается судить об эффективности ингибиторов.  [c.129]

КИНЕТИКА ПАРЦИАЛЬНЫХ ПРОЦЕССОВ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ. ЗАКОНОМЕРНОСТИ КАТОДНОГО ВЫДЕЛЕНИЯ ВОДОРОДА  [c.68]

КИНЕТИКА ПАРЦИАЛЬНЫХ ПРОЦЕССОВ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ. ЗАКОНОМЕРНОСТИ ЭЛЕКТРОХИМИЧЕСКОГО ВОССТАНОВЛЕНИЯ КИСЛОРОДА  [c.81]

КИНЕТИКА ПАРЦИАЛЬНЫХ ПРОЦЕССОВ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ. ЗАКОНОМЕРНОСТИ АНОДНОГО РАСТВОРЕНИЯ МЕТАЛЛОВ  [c.93]

КИНЕТИКА И МЕХАНИЗМ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ МЕТАЛЛОВ  [c.126]

Кинетику электродных процессов, в том числе и электродных процессов электрохимической коррозии металлов, принято изображать в виде поляризационных кривых, представляющих собой графическое изображение измеренной с помощью описанной в ч. III методики зависимости потенциалов электродов V от плотности тока i = I/S, т. е. V = f i). На рис. 136 приведены кривые анодной и катодной поляризации металла, характеризующие его поведение в качестве анода и катода коррозионного элемента. Степень наклона кривых характеризует большую (крутой ход) или малую (пологий ход) затруд-  [c.194]

Электродные процессы электрохимической коррозии металлов обязательно включают в себя, как всякий гетерогенный процесс, помимо электрохимической реакции, стадии массопереноса, осуществляемые диффузией или конвекцией отвод продукта анодного процесса (ионов металла) от места реакции — поверхности металла, перенос частиц деполяризатора катодного процесса к поверхности металла и отвод продуктов катодной деполяризацион-ной реакции от места реакции — поверхности металла в глубь раствора и т. п. Суммарная скорость гетерогенного процесса определяется торможениями его отдельных стадий. Если, однако, торможение одной из последовательных его стадий значительно больше других, то сумм.арная скорость процесса определяется в основном скоростью этой наиболее заторможенной стадии. В коррозионных процессах довольно часты случаи диффузионного или диффузионно-кинетического контроля, т. е. значительной заторможенности стадий массопереноса. В связи с этим диффузионная кинетика представляет теоретический и практический интерес.  [c.204]

В. данной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вслодст-ине взаимодействия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химической коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозии непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается при действии на металл сухих газов или жи.чкпх иеэ.лектролитов.  [c.131]

Электрохимическая кинетика — это область науки, изучающая скорость реакции на границе электрода и контактирующей с ним жидкости. Электрохимическая кинетика расширила наше понимание механизма коррозии и позволила практически определять скорость коррозии. Интерпретация коррозионных процессов как суммы частных электродных реакций была разработана Вагнером и Траудом [1 ].В данной главе введены важные понятия электрохимической кинетики — потенциал коррозии (называемый также компромиссным стационарным потенциалом), плотность коррозионного тока, плотность тока обмена и тафелевская зависимость плотности тока от потенциала. В настоящей книге электрохимическая кинетика рассмотрена кратко и в основном  [c.46]


Основную ДОЛЮ сопротивления составляет поляризационное, которое, в основном, и определяет защитные свойства покрьггий. Поэтому при проектировании защитных покрытий основное внимание должно быть обращено не на повышение удельного электрического сопротивления (увеличением толщины покрытия), а на изменение кинетики электрохимических реакций, например, включением в состав покрытия пассивирующих пигментов или металлических наполнителей ( Zn, А1 ), электрохимически защищающих метяпл от коррозии, или ингибиторов коррозии, влияющих на поляризационное сопротивление коррозионной системы.  [c.62]

Углеводороды могут изменять кинетику электрохимических реакций в зависимости от анионного состава электролита и концентрации ионов водорода- В растворе хлористого натрия и в растворе уксусной кислоты в присутствии индивидуальных углеводородов октана, бензола, циклогексана наблюдалось увеличение коррозионных потерь. Это объясняется наличием растворенного кислорода в углеводородах, что приводит к повышению содержания кислорода в системе и увеличению доли коррозионного процесса, протекающего с кислородной деполяризацией [21]. Увеличение коррозионных потерь в растворе хлортстого натрия составляло в среднем 20-30 %, а в водных растворах уксусной кислоты скорость коррозии возрастала заметнее, чем в растворе хлористого натрия. Наводороживание в присутствии сероводорода в обоих растворах уменьшается, что в работе [21] объясняется связыванием кислородом адсорбировавшегося водорода по реакции 1/2 О2 + 2Надс - НаО. В сероводородсодержащих растворах Na l количество диффузионно-подвижного водорода достигало 2,2 см /ЮО г. Введение малых добавок -6,25 % октана, циклогексана и нефти привело к его снижению до 1,2 1,0 1,4 см /ЮО г соответственно [21]. Бензол при этой концентрации оказывал меньшее влияние, однако в связи с более высокой растворимостью сероводорода в бензоле, чем в октане и тем более в циклогек-  [c.32]

В процессе коррозии стали и, в частности, при кислотнохимической промывке котельного оборудования тепловых электростанций образуются ионы трехвалентного железа Fe , которые существенно влияют на кинетику реакций электрохимической коррозии. Поэтому были проведены эксперименты по изучению коррозионного поведения стали с различной степенью наклепа в присутствии ионов Fe +.  [c.149]

Современная теория электрохимической коррозии металлов основывается на том, что не только чистый металл, но и металл с заведомо гетерогенной поверхностью корродирует в электро-ште как единый электрод согласно закономерностям электрохимической кинетики. На его поверхности одновременно и независимо друг от друга протекают анодная и катодная реакции, в совокупности составляющие процесс коррозии. В то же время роль электрохимической гетерогенности процесса электрохимической коррозии велика, хотя в ряде сл> чаев повышение гетерогенности приводит не к увеличению скорости коррозии, а, наоборот, к ее снижению. Качественно и количественно роль гетерогенности проявляется в кинётгмеских Характеристиках анодной и катодаой реакций. При коррозии технических сплавов, для которых характерен высокий уровень электрохимической гетерогенности поверхности, возможно неравномерное распределение скорости анодного процесса на поверхности сплава, обусловливающее преимущественное растворение отдельных фаз, что приводит к локализации коррозии [25, 27].  [c.29]


Смотреть страницы где упоминается термин Кинетика электрохимической коррозии : [c.61]    [c.63]    [c.11]    [c.5]   
Смотреть главы в:

Теория коррозии и коррозионно-стойкие конструкционные сплавы  -> Кинетика электрохимической коррозии

Коррозия и защита металла теплоэнергетического оборудования  -> Кинетика электрохимической коррозии


Коррозия и основы гальваностегии Издание 2 (1987) -- [ c.18 , c.22 ]



ПОИСК



Изучение кинетики электрохимической коррозии металлов в различных средах

Кинетика

Кинетика и механизм электрохимической коррозии металлов

Кинетика коррозии

Кинетика парциальных процессов электрохимической коррозии. Закономерности анодного растворения металлов

Кинетика парциальных процессов электрохимической коррозии. Закономерности катодного выделения водорода

Кинетика парциальных процессов электрохимической коррозии. Закономерности электрохимического восстановления кислорода

Кинетика электрохимическая

Кинетика электрохимической коррозии металлов

Кинетика электрохимической коррозии. Катодная и анодная поляризация

Основные представления о кинетике электрохимической коррозии

Основные представления о кинетике электрохимической коррозии металлов

Расчет скорости коррозии по данным электрохимической кинетики

Электрохимическая коррози

Электрохимическая коррозия

Электрохимические основы действия ингибиторов кислотной коррозии стали Кинетика коррозионных процессов в присутствии ингибиторов Дрожжин, А. М. Сухотин

Электрохимический



© 2025 Mash-xxl.info Реклама на сайте