Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вольфрам — Влияние на свойства

Наряду с хромом положительное влияние на свойства сталей для валков оказывают кремний, вольфрам, ванадий.  [c.80]

Вольфрам — Влияние на свойства стального литья 115 Время машинно-ручное при обработке пластмасс, стали и цветных металлов  [c.949]

Войлок — Общая характеристика — Применение 229 Вольфрам — Влияние на свойства стали 9 (табл. 3)  [c.286]

Легированными называются стали, в которых, кроме углерода, существенное влияние на свойства оказывают хром, никель, ванадий, вольфрам, бор, молибден, кремний, марганец и другие элементы, содержащиеся в значительном количестве в стали.  [c.28]


В качестве дополнительно легирующих элементов в большинстве случаев применяется молибден или вольфрам, или тот и другой элементы вместе взятые. Кроме того, положительное влияние на свойства жароупорных сталей и сплавов оказывает титаи, который образует весьма устойчивые мелкодисперсные карбиды, повышающие сопротивление ползучести.  [c.226]

Водород-перекись — Свойства 3 Водород хлористый — Свойства 13 Волочение титана 461 Вольфрам — Влияние на свойства стального литья 126 — Растворимость в химических средах 70  [c.540]

Вольфрам очень высокой чистоты пластичен при комнатной температуре. По прочности при высоких температурах вольфрам превосходит все остальные металлы. На механические свойства вольфрама сильное влияние оказывают примеси. Содержание в металле небольших количеств примесей делает его очень хрупким (хладноломким). Наиболее отрицательное влияние на свойства вольфрама оказывают кислород, азот, углерод, железо, фосфор, кремний.  [c.398]

Все эти факторы тесно связаны с физико-механическими свойствами металлов и, следовательно, с их химическим составом и структурой. Из всех элементов химического состава на интенсивность износа режущего инструмента влияют наиболее значительно углерод, алюминий, титан, кремний и в меньшей степени молибден, марганец, хром и вольфрам. Степень влияния этих элементов выражают следующими условными элементами.  [c.328]

Многочисленными исследованиями как отечественных, так и зарубежных ученых установлено, что наиболее эффективное влияние на жаропрочные свойства стали оказывает небольшая группа элементов, именно хром, молибден, ванадий и вольфрам, которые являются основными при легировании малоуглеродистых марок жаропрочной стали в меньшей степени исследованы и применяются ниобий, титан и бор.  [c.22]

Отпуск оказывает значительное влияние на механические свойства легированной конструкционной стали повышает предел текучести, вязкость и пластичность при некотором снижении прочности. Интенсивность снижения прочности зависит от легирующих элементов. Кремний, кобальт, хром, молибден, вольфрам и ванадий задерживают снижение твердости и прочности.  [c.403]

Вольфрам, как и другие ферритизаторы, упрочняет металл шва. Он, а также ванадий, оказывают благоприятное влияние на механические свойства сварных швов стали типа 25-20 прочность их повышается без ущерба для пластичности (табл. 41).  [c.233]

Система Fe—Мп. По влиянию на механические свойства железомарганцевых сплавов легирующие добавки можно разделить на две группы к первой относится кобальт, который незначительно повышает прочностные свойства, и кремний, увеличивающий пределы прочности и текучести при сохранении высокой пластичности и ударной вязкости ко второй — хром, никель [142], молибден, вольфрам [1], понижающие прочностные свойства.  [c.104]


Стали инструментальные легированные. Легированной называют сталь, которая кроме обычных постоянных примесей содержит еще ряд элементов, специально вводимых в сталь при ее выплавке для получения заданных свойств. Эти элементы называются легирующими и к ним относятся хром, никель, вольфрам, ванадий, молибден, кобальт, титан. Кремний и марганец, если они специально введены в сталь, тоже являются легирующими элементами. Легирующие элементы по-разному влияют на свойства сталей. Основное их влияние выражается в следующем.  [c.13]

Лишь примерно сто лет спустя после открытия вольфрам приобрел большое промышленное значение. В 50-х годах прошлого века было обнаружено влияние добавок вольфрама на свойства стали, но широко применять вольфрамовые стали начали в конце XIX — начале XX веков.  [c.25]

Молибден действует аналогично вольфраму, но добавляется в сталь в количестве, примерно в три раза меньшем, чем вольфрам. Молибден так же, как и вольфрам, — дорогой металл, однако в ряде случаев, например в инструментальных и штамповых сталях, благоприятное влияние этих элементов на свойства стали вполне оправдывает их применение.  [c.13]

Отливки из легированной стали. Литьё с высокой прочностью или со специальными свойствами получают за счёт введения легирующих элементов и комбинированной термической обработки этих сталей нормализации с отпуском, закалки в воде, масле или на воздухе с последующим отпуском и пр. Основными легирующими элементами являются хром, никель, марганец, молибден, кремний, ванадий, медь, вольфрам и титан. В последнее время начинают вводить Колумбии, азот, селен, цирконий и др., небольшие количества которых оказывают благотворное влияние на литьё.  [c.39]

Влияние легирующих элементов на свойства стали. Легирование стали никелем повышает ее прокаливаемость этому же способствуют присадки марганца, молибдена, хрома, бора. Никель увеличивает также вязкость и пластичность стали, понижает температуру порога хладноломкости. Однако никель дорог, поэтому его вводят в сочетании с марганцем или хромом. Понижение порога хладноломкости достигается также присадкой хрома, молибдена, вольфрама, ванадия, титана, ниобия и циркония, которые образуют дисперсные труднорастворимые в аустените карбиды и препятствуют росту зерна аустенита. Рост зерна аустенита задерживается также присадкой алюминия, присутствующего в виде дисперсных оксидов. Молибден и вольфрам повышают также стойкость стали к отпуску. Кобальт (как и никель) полностью взаимно растворим с железом, повышает точку и способствует понижению количества остаточного аустенита в закаленной стали.  [c.112]

Легированные стали — железоуглеродистые сплавы со специальной добавкой различных легирующих элементов. К специальным примесям или добавкам относятся никель, хром, молибден, вольфрам, ванадий, кобальт, титан, марганец (более 1%), кремний (более 0,5,%). Данные о влиянии разных легирующих элементов на свойства стали приведены в табл. 1.  [c.7]

Хромоникелевые стали аустенитного класса хорошо свариваются всеми видами сварки. Однако при выборе способов сварки следует учитывать специфические свойства, оказывающие влияние на качество свариваемых изделий. К ним относятся низкая теплопроводность, более высокий коэффициент линейного расширения, чем у малоуглеродистой стали, и склонность к межкристаллитной коррозии. Первые два свойства обусловливают повышенное коробление изделий из этих сталей в процессе сварки. Причиной межкристаллитной коррозии стали может быть замедленное охлаждение или нагрев (например, при газовой и меньше при ручной дуговой сварке) в интервале температур 450— 850°С, при этом происходит выпадение карбидов хрома по границам зерен (кристаллов), вследствие чего внешние оболочки кристаллов обедняются хромом. Это способствует образованию межкристаллитной коррозии. Межкристаллитную коррозию предотвращают введением в сталь титана, вольфр ама, молибдена и других легирующих элементов, которые препятствуют выпадению карбидов хрома, а также изменяют процесс сварки. Чтобы уменьшить склонность стали к межкристаллитной коррозии и короблению изделий, сварку аустенитных хромоникелевых сталей необходимо вести так, чтобы обеспечить наименьшую зону нагрева при максимальной скорости сварки и охлаждении. При газовой и обычной дуговой сварке выполнение этих условий затруднено, так как имеет место замедленный нагрев (при газовой сварке) и медленное охлаждение после сварки. Поэтому возможен перегрев околошовной зоны и появление межкристаллитной коррозии.  [c.114]


Решая проблему высокопрочных сталей, советские ученые шли оригинальным путем, правильность которого подтвердил многолетний опыт эксплуатации самолетов. Сотрудники ВИАМа четко представляли, что сырьевые ресурсы страны оказывают огромное влияние на развитие авиационной техники. В СССР имелись все виды сырья. Однако по ряду металлов (молибден, никель, вольфрам, кобальт, ванадий, олово, медь) положение в 30-х годах было очень напряженным. Поэтому разработка на основе отечественного сырья материалов, особенно конструкционных сталей и сплавов, освобождающих нашу страну от иностранной зависимости, от необходимости импорта дефицитных металлов, была одним из главнейших направлений в работах ВИАМа. Ученые доказали возможность использования кремния и марганца в качестве легирующих элементов для сталей с высокими механическими свойствами, не уступающими хромоникелевым.  [c.336]

Технические сплавы на кобальтовой основе, содержащие хром, а также вольфрам или молибден (известные под маркой стеллитов, табл. 1 на стр. 751 и табл. 1 на стр. 297), наиболее пригодны для применения при высоких температурах. Они сохраняют твердость и прочность до температур более высоких, чем какие-либо другие сплавы. Относительно кратковременный нагрев до 1000° не оказывает остаточного влияния на их твердость и прочность. Например, при 1000 стеллит № 6 имеет твердость по Бринелю 70 и Овд=25,2 кг мм , но при комнатной температуре к нему возвращаются его нормальные свойства // = 360 и = 73,5 кг]мм . Особенно хороши свойства этих сплавов, когда они длительно служат под напряжением при высоких температурах. Эта термическая устойчивость сделала их пригодными не только для режущих инструментов, но и для других целей, где имеет место износ или комбинированное действие износа и коррозии.  [c.98]

Рекристаллизованный рений имеет относительное удлинение <) = 25 - 28%, вольфрам в том же состоянии хрупок (<5 = 0). Однако механические свойства рения, так же, как других тугоплавких металлов, в сильной степени зависят от его чистоты. В табл. 24 показано влияние газов на механические свойства (при растяжении) плавленого рения.  [c.97]

Свойства тантала под действием облучения изменяются за счет смещения атомов и их превращения в вольфрам в результате ядерной реакции. Проводили испытания на растяжение, изгиб и измерение твердости облученного листового тантала [31]. Доза обл чения примерно соответствует дозе, требующейся для образования в тантале 1,5—3,0 вес.% вольфрама при соответствующей ядерной реакции. Предел прочности и предел текучести тантала заметно увеличивались в результате облучения. Эти результаты указывают, что основная часть увеличения прочности может быть приписана влиянию нарушений, производимых быстрыми нейтронами, а вклад, обусловленный превращением указанного количества тантала в вольфрам, сравнительно невелик. В табл. 5.13 приведены прочностные характеристики тантала до и после облучения.  [c.270]

Приведённые на фиг. 24 — 28 кривые характеризуют влияние легирующего элемента (Сг, Мо, N1, Мп, 51) на механические свойства феррита (сплавы содержат менее О,О2> /0 С). Слабее других элементов упрочняют феррит хром, молибден и вольфрам — элементы, изоморфные а-железу сильнее — марганец, ни-  [c.332]

Такие элементы, как тантал, титан и цирконий, не подвергались коррозии и при более высокой концентрации кислорода. Концентрация металла в жидком сплаве после испытания (вследствие влияния окиси) могла увеличиваться примерно в десять раз. Нержавеющие стали, особенно типа нимоник, довольно стойки при более высокой концентрации кислорода, причем содержание металла в теплоносителе оставалось неизменным. На никель, молибден и вольфрам кислород действует так же, как на титан. С добавлением урана даже при повышенной концентрации кислорода стойкость конструкционных материалов не понижалась. Влияние урана на совместимость свойств натрия с другими металлами заключается в том, что являясь геттером он полностью ликвидирует кислород в теплоносителе. В результате наблюдалось, что любая окись, присутствующая вна-  [c.320]

Для получения высоких механических свойств по всему сечению крупногабаритных деталей в легированную сталь вводят марганец и никель, интенсивно увеличивающие прокаливаемость стали. Что касается прочностных свойств, то марганец и в особенности никель оказывают на них значительно меньшее влияние, чем такие элементы, как хром, молибден, вольфрам, ванадий и т. п.  [c.129]

Медь-вольфрам. В этой серии образцоь основное внимание было уделено высоте заряда взрывчатых веществ, ее влиянию на свойства материала и качество соединения. Объемное содержание волокон было одинаковым и составляло 17%.  [c.165]

Легирующие элементы, такие как молибден, ванадий, хром, вольфрам, никель, титан и др., оказывают большое влияние на свойства гталей и чугунов. Стали с перечисленными компонентами, прошедшие гпециальную термическую обработку, очень широко применяют в паро-турбостроении.  [c.6]

Легирующие элементы — хром, никель, молибден, вольфрам, медь и титан — оказывают влияние на литейные свойства, резко повышают механические качества и дают возможность получения отливок из конструкционной мало- и среднелегн-рованной стали с кислотостойкими, жаропрочными, антикоррозионными и прочими свойствами.  [c.114]

Влияние легирующих элементов на структуру и свойства стали. По влиянию на устойчивость аустенита все легирующие элементы делятся на две группы расширяющие область существования аустенита и сужающие ее (соответственно, расширяющие область существования феррита). К цервой группе относятся никель, марганец, кобальт и др. Ко второй — хром, кремний, аллюминий, молибден, титан, ванадий, вольфрам и др. Элементы первой группы понижают критические точки A3 и А , второй — повышают. Соответственно, изменяются темпера-  [c.153]


Количественное соотношение элементов было получено как оптимальное по результатам исследования раздельного и комплексного легирования и его влияния на механические свойства. Установлено, что наилучшее сочетание прочности и пластичности обеспечивает двойное легирование ванадием и вольфрамом. Кроме того, вольфрам обладает низким коэффициентом линейного расширения (4-10 1/°С). Снижению коэффициента термического расширения и повышению температуры Нееля способствует и дисперсионное твердение. Таким образом в сталях 50Г20ФВ7 и 50Г20Х4ФВ7 реализованы два способа регулирования коэффициента термического расширения  [c.295]

Влияние основных компонентов на свойства порошковых сталей достаточно хорошо описано в литературе [24, 25], Однако технико-экономические факторы накладывают определенные ограничения при использовании легирующих элементов при производстве порошковых сталей. Вольфрам и ванадий являются дорогостоящими элементами и введение их в порошковую сталь экономически нецелесообразно. Учитывая их определенную ограниченность по возможности применения в массовом производстве можно отметить, что серийная технология производства порошковых сталей с использованием порошков вольфрама и ванадия экономически и технологически невыгодна. Применение порошка алюминия в смеси с железным порошком не приводит к существенному улучшению свойств спеченных сталей из-за высокого сродства алюминия к кислороду и малой растворимости алюмния в железе при температурах спекания — эти факторы отрицательно влияют на физико-механические свойства порошковых сталей.  [c.49]

Как показано в большом количестве работ (см. гл. I, II), таким элементом является молибден, введение которого в сталь в количестве 0,3—0,6 % значительно тормозит развитие отпускной хрупкости. Аналогичное действие оказывает и вольфрам в хромоникелевых и хромомарганцовистых сталях, но оптимальное содержание этого дефицитного элемента еще больше, чем у молибдена, и составляет 1,1-1,6 %, а развитие хрупкости тормозится не столь эффективно как молибденом. Как считают Хондрос и Си [32], маловероятно, что для сплавов на основе железа можно найти другие добавки, снижающие подвижность фосфора, олова и сурьмы и не оказывающие вредного влияния на другие свойства сплавов.  [c.193]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

Оценить истинные механические свойства тугоплавких металлов при комнатной температуре довольно трудно из-за существенного влияния на эти свойства ничтожно малых количеств примесей, образующих твердые растворы внедрения. Однако из табл. IV. 14 ясно видно, что хром и вольфрам обладают низкой пластичностью прг= 1Сомнатной температуре, в то время как ванадий, ниобий и тантал отличаются высокой пластичностью. Относительно свойств молибдена имеются противоречивые данные.  [c.468]

На поведение материала под нагрузкой, его прочность, способность деформироваться существенное влияние оказывает температура. В однофазных металлах это влияние связано с изменением прочности границ зерен и прочности их тела. При этом существенную роль играет тип кристаллической решетки. Так, если в металлах с объемноцентрированной решеткой (железо, молибден, хром, ванадий, вольфрам) при низких температурах предел текучести заметно изменяется, то у металлов с гранецентрированной кубической решеткой (медь, алюминий, серебро, никель, свинец, золото, платина) это изменение почти отсутствует 1346]. Влияние температуры на свойства металлов с гексагональной решеткой (цинк, кадмий, магний, титан, цирконий, беррил-лий) не имеет общих закономерностей [527 ]. У некоторых однофазных металлов с изменением температуры наблюдается выделение дисперсных частиц вновь образовавшейся фазы, что иногда увеличивает склонность к хрупкому разрушению (старение, некоторые виды тепловой хрупкости).  [c.165]

Сг, дополнительно легированные такими элементами, как никель, молибден, ванадий, вольфрам, ниобий, что обеспечивает получение более высоких механических свойств при повышенных температурах. Стали подобного типа имеют преимущества перед сталями X13 без дополнительного легирования и в отношении коррозионной стойкости. Стали этого типа отличаются достаточно высокими значениями ударной вязкости. Ниже кратко рассматривается влияние отдельных легирующих элементов на свойства стали 1X13 [69—71].  [c.74]

Вольфрамомолибденовые стали типа Р6М5 (Р6АМ5), Р8МЗ содержат 5—8% вольфрама и не более 5% молибдена. По влиянию на теплостойкость молибден замещает вольфрам в соотношении примерно Mo W = 1 1,5. С учетом пересчета по приведенному соотношению при условном содержании вольфрама 12—13% обеспечивается благоприятное влияние молибдена на прочность и вязкость без ухудшения теплостойкости. Поэтому стали вольфрамомолибденовой группы имеют повышенные прочностные характеристики, превосходящие по этому показателю практически все остальные быстрорежущие стали (табл. 1). Указанные в таблице марки являются лучшими для изготовления мелкого концевого инструмента (метчики, развертки диаметром менее 1,5 мм), работающего без повышенных температур в зоне резания. Для резания же труднообрабатываемых материалов инструментом больших размеров эти стали практически непригодны, кроме того, введение молибдена ухудшает технологические свойства сталей, 6  [c.6]

Влияние карбидов на свойства легированных сталей. Карбиды являются наиболее важной второй фазой большинства сталей. Содержание углерода в большинстве конструкционных сталей в 10 - 100 раз превышает содержание азота. При N s 0,008 % азот либо связьшается алюминием, образуя нитрид A1N, либо вместе с углеродом образует карбонитри-ды. Карбидообразующими элементами в сталях являются железо, марганец, хром, молибден, вольфрам, ванадий, ниобий, титан, цирконий. Они приведены в порядке возрастания их активности при образовании карбидов. Они являются переходными металлами с незаполненной полностью -электронной оболочкой атомов и поэтому активно взаимо-  [c.27]

На свойства композиционных отливок существенное влияние оказывает межфазное взаимодействие. Композиционные материалы — система гетерогенная, термодинамически нестабильная. Поэтому взаимодействие между компонентами может протекать как при изготовлении, так и при эксплуатации отливок. Для создания связей матрица — волокно взаимодействие необходимо, но если взаимодействия приводят к появлению хрупких фаз. То это ухудшает свойства. Поэтому следует учитывать выбор состава армирующей проволоки. Например, при армирований чугуна проволокой, содержащей вольфрам, на границе появляется хрупкая фаза, ухудша-  [c.694]


Аналогичные теории и представления о прочности поверхности раздела при растяжении и сдвиге были развиты применительно к композитам первого класса. Приведенные Купером и Келли примеры композитов (таких, как медь — вольфрам) подтверждают справедливость выполненного ими анализа поведения систем с металлической матрицей. В системах второго и третьего классов на границе волокно — матрица появляется зона конечной ширины, отличающаяся по свойствам как от матрицы, так и от волокна. Анализ систем второго класса был начат Эбертом и др. [16]. Они использовали дифференциальные методы для оценки влияния диффузии в зоне раздела на механические свойства компонентов. Эта работа является одновременно и первым анализом немодельных систем, хотя она и была ограничена лишь системами с химическим континуумом, т. е. непрерывным изменением состава (см. гл. 2). В системах третьего класса наличие продукта реакции приводит к химическому дисконтинууму — прерывистому измене-  [c.19]

Основное влияние вольфрама на сталь определяется его способностьк сохранять высокую твердость при повышенных температурах, называемую красностойкостью . Это свойство усиливается в присутствии хрома и еще больше в присутствии кобальта, хотя и с некоторой потерей ударной вязкости, Помимо применении к производстве быстрорежущих сталей для режущих инструментов, вольфрам применяется при горячей обработке сталей, окончательной обработке (полировании) и волочении жаростойких и плохо деформируемых сталей.  [c.158]

Вольфрам повышает пределы прочности и текучести стали при незначительном уменьшении относительного удлинения, повышает твердость н износостойкость ее. Особенно важно положительное влияние вольфрама на механические свойства сталей при повышенных температурах, повышение теплостойкости п стойкости против отпуска, поэтому вольфрам является главным легирующим элементом сталей для инструментов горячей обработки и быстрорежущих сталей. Отечественный ферровольфрам соответствует сам1.ш высоким требованиям (табл. 79). Выплавка ферровольфрама некоторых марок с молибденом объясняется присутствием R вольфрамовом концентрате некоторых месторождений значительного количества молибдена (2,0—4,5 /о).  [c.254]

Благоприятное влияние вольфрама на структуру и свойства штамповых сталей при увеличении его содержания до 5,0 % связывают с увеличением количества карбида МевС по отношению к карбиду Ме С , что ведет к формированию более дисперсных выделений Повышение содержания вольфрама до 5,0—6,0 % способствует увеличению эффекта дисперсионного твердения после закалки и высокого (500—550 °С) отпуска Вольфрам повышает теплостойкость комплексно легированных штамповых сталей и механические свойства как при комнатной, так и при повышенных температурах  [c.381]


Смотреть страницы где упоминается термин Вольфрам — Влияние на свойства : [c.396]    [c.403]    [c.91]    [c.134]    [c.150]    [c.379]   
Автомобильные материалы (1971) -- [ c.0 ]

Чугун, сталь и твердые сплавы (1959) -- [ c.0 ]



ПОИСК



141 — Влияние на свойства

Вольфрам

Вольфрам—Свойства



© 2025 Mash-xxl.info Реклама на сайте